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Abstract: Abstract: The missile interceptors integrated guidance and control technology 
for achieving the hit-to-kill accuracy against targets performing evasive maneuvers 
including spiraling motion is developed on the basis of high (second) order sliding mode 
control (HOSM). The integration of guidance and flight control systems is achieved in a 
two-loop guidance and flight control system designed in the combined state space of 
engagement kinematics and vehicle dynamics. The designed guidance-control system 
performance is verified via computer simulations using miniature hypervelocity kinetic 
energy endo-atmospheric interceptor planar model. Copyright © 2005 IFAC 
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1. INTRODUCTION 
The miss distance as an ultimate performance 
criterion of a homing interceptor is crucially 
dependent on guidance, navigation and control (see 
Bezick, Rusnak, & Gray, 1995; Garnell, & East, 
1977; and Zarchan, 1998) working together in a 
closed loop. This situation calls for the integrated 
design of all interceptor modules: sensor information 
processing and necessary data estimation, a homing 
guidance law, and flight control (autopilot). The 
primary goal of this work is to develop the enabling 
guidance and control technology for missile 
interceptors to achieve the hit-to-kill accuracy 
against targets performing evasive maneuvers 
including spiralling motion, using high order sliding 
mode control (HOSM) developed in works of 
Floquet, Barbot, & Perruquetti (2003), Fridman 
(2001, 2003), Levant (1993,1998, 2001, 2003), and 
Orlov, Aguilar, & Cadiou (2003).   
The main concern of the paper is to use minimum 
possible information in order to achieve the goal 
(target intercept) in presence of uncertainties and 
disturbances acting in the homing loop. In this work, 
an integrated two-loop HOSM-based guidance and 
flight control system is designed to robustly enforce 
the target intercept in presence of target maneuvers, 
atmospheric disturbances, and dynamic uncertainty 
of airframe-actuator. The paper is organized as 

follows: Section 2 is dedicated to intercept strategy 
and a guidance law development based on a smooth 
second order sliding mode. In Section 3 integration of 
HOSM-based guidance and flight control system is 
presented. Simulations are discussed in Section 4. 
Conclusions are summarized in Section 5. 
 

2. INTERCEPT STRATEGY AND SLIDING MODE 
GUIDANCE 

2.1 Introduction to Sliding Mode Guidance and 
Problem Formulation 

It’s known (see Zarchan, 1998) that proportional 
navigation (PN) homing missile guidance can be 
derived as the optimal solution in mean-square sense, 
when there is no target maneuver, and only initial 
heading error should be nullified. In presence of a 
step-constant target maneuver augmented 
proportional navigation (APN) guidance is optimal 
for zero-lag guidance system. However, in reality the 
unmodeled series dynamics can cause instability of 
the homing loop that yields large miss distance. 
Optimal guidance law (OGL) effectively 
compensates for a single-lag frame dynamics in 
presence of a step-constant target maneuver 
modifying APN by using information of time-to-go 
and effective time-constant of the guidance system. 
However, OGL is difficult to derive and implement 
(see Zarchan, 1998).Recent application of sliding 



     

mode control (SMC) (see Utkin 1998) to the homing 
missile guidance (see Brierly and Longchamp, 1990; 
Babu, Sarma, and Swamy, 1994; Zhou, Mu, and Xu, 
1999; Moon and Kim, 2000; Shkolnikov, Shtessel, 
et. al., 2000), resulted in a series of very effective 
algorithms in terms of smaller acceleration advantage 
required for intercept of weaving targets as compared 
to PN and APN guidance. Though SMC guidance 
doesn’t use direct estimate of target acceleration, it’s 
comparable to OGL. Since the guidance law must be 
smooth, all SMC guidance algorithms include 
smoothing procedures that yields partial loss of 
robustness to disturbances and uncertainties. In this 
work the problem is addresses in the frame of HOSM 
(see Levant 1993,1998, 2001, 2003; Shtessel, 
Shkolnikov, and Brown, 2003). A smooth asymptotic 
second order sliding mode control algorithm (SOSM) 
(see Shtessel, Shkolnikov, and Brown, 2003) is 
reassessed and is proved to be SOSM control. Next, 
the guidance algorithm based on a smooth SOSM 
control and SOSM controller/autopilot based on 
nonlinear dynamic sliding manifold (see Krupp, 
Shkolnikov, & Shtessel, 2000) are used for designing 
an integrated guidance-flight-control system. The 
main idea developed in this work is to enforce the 
suitable closed-loop missile-target engagement 
kinematics using the input voltage signal to the 
actuator as control. In this case engagement 
kinematics and missile dynamics are integrated into 
one state space, and the intercept problem is 
transformed into the output regulation problem, 
which is addressed using SOSM-based control for 
the missile aerodynamic surface actuator. 
 

  

 

2.2 Intercept Strategy: Geometric Approach 

One can derive planar missile-target engagement 
kinematics without account for gravity as 
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such that 2ℜ∈MTMTRR A,A,V,V,A,VR, ; 

RR A,VR,  are range to the target and its first and 
second time-derivatives respectively; TT A,V  are 
target velocity and acceleration, MM A,V  are missile 
velocity and acceleration. The guidance command is 
missile normal acceleration, Ln . In polar coordinate 
system the missile-target relative position is 
presented by ),( λr=R , where r = range along Line-
Of-Site (LOS), and λ = LOS angle. The following 
state model (see Shkolnikov, Shtessel, et. al., 2000) 
of missile-target engagement process is obtained 
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where we consider λω  as a commanded output, 
missile normal acceleration as a control input, and 
projections of target acceleration along and 
orthogonal to LOS, λ  , TrT AA , are considered as 
unknown bounded disturbances. The system (2) can 
be written also as 
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where λλ ωrV =  is a transversal component of 
relative velocity in the reference frame rotating with 
LOS. It is well known that for a direct hit, it’s 
necessary to keep 0<rV . It was shown in 
Shkolnikov, Shtessel, et. al., 2000 that direct hit can 
be achieved if 0=λω  or 0=λV . Another less 
aggressive hit-to-kill guidance strategy is known 

rc /0=λω  or rcV 0=λ , (4) 
where 0c  is some constant. 

Now, the following guidance task can be formulated: 
Stabilize the system (2) or (3) on the manifold 

01 == λωσ , or 01 == λσ V  (5) 
or 

0./02 =−= rcλωσ , or 002 =−= rcVλσ  (6) 

by means of the normal acceleration (guidance) 
command Lcn . This command is usually followed by 
means of corresponding aerodynamic surface 
deflections that is treated as a control function 
compensating for the interceptor dynamics. 
In the work of Shkolnikov, Shtessel, et. al., (2000) a 
different approach was proposed. After stabilization 
of (5) or (6) at zero the resulted compensated 
kinematics is derived. On the basis of this 
compensated kinematics a corresponding sliding 
surface is designed and stabilized by controlling the 
aerodynamic surface deflection. Doing this the 
guidance law in terms of Lcn  is dissolved in the 
sliding surface designed on the basis compensated 
kinematics of the interceptor. Unlike in the work 
Shkolnikov, Shtessel, et. al., (2000), where various 
continuous approximations of SMC were studied for 
the normal acceleration command, Lcn , design, in 
this work we propose to use HOSM-based control. 
The expected advantages are in increasing robustness 
and accuracy of hit-to-kill intercept. 
 
2.3 Prescribed Sliding Variable Dynamics 

Consider a SISO sliding variable dynamics given as 
utxf += ),(σD , (7) 

where ℜ∈),( txσ  is the sliding quantity, such that 
0=σ  defines the system motion on the sliding 

surface, 1ℜ∈u  is a control input that is supposed to 
be smooth, and ),( txf  is an uncertain differentiable 
(smooth) nonlinear time-varying function, and 

nx ℜ∈  is a state vector of the system the sliding 
variable dynamics (7) is considered for. The drift 
term ),( txf  is cancelled by means of a special 
observer to be developed further.  
The following compensated σ-dynamics in (7) is 
considered 
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where σ=1x . 
Definition. We call a system finite-time stable 
(Bacciotti, & Rosier, 2001), if it is asymptotically 
stable with a finite settling time for any solution and 
initial conditions. 
Lemma 1. Let r ≥ 2, α1, α2 > 0. Then the system (8) is 
finite-time stable, and the settling time being a 
continuous and vanishing at the origin function of 
the initial conditions. 
Proof. Consider the following Lyapunov function 
candidate:  
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Its derivative is 
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Apply the La Salle theorem. The set { }0)(: =xVx D  
consists of the axis 01 =x . It is easy to see that the 
only invariant set inside 01 =x  is the origin 

021 == xx . Thus, the asymptotic convergence of 

1x  and 2x  to zero is assured. It is easy to see that 
system (8) is homogeneous with the dilation  
dκ: (x1, x2) v  (κrx1, κr-1x2) and the negative 
homogeneity degree -1. Following the results of 
Bacciotti, & Rosier, (2001), the asymptotical stability 
implies here the finite-time stability and the 
continuity of the settling time function. � 
When the variables are sampled at discrete times ti 
with some sampling step τ > 0 the system (8) take on 
the form 

1xD  = - α1 |x1(ti)|
 (r - 1)/ r sign x1(ti)  + x2(ti) (9) 

2xD  = - α2 |x1(ti)|
 (r - 2)/ r sign x1(ti) (10) 

where the current time satisfies the condition 
τ+=<≤ + iii tttt 1     (11) 

Lemma 2. Let r ≥ 2, and α1, α2 > 0. Then with τ > 0 
all trajectories of the discrete-sampling system (9), 
(10) converge in finite time into some vicinity of the 
origin defined by the inequalities | x1| < γ1 τ

r, |x2| < γ2 
τr - 1 with γ1, γ2 > 0. 
Proof. It is proven in Lemma 1 that with τ = 0 the 
system is finite-time stable. In particular all 
trajectories starting in some closed disk D0 centred at 
the origin converge to the origin in some finite time 

T. The right-hand sides of (8) are uniformly 
continuous in D0, therefore, due to the continuous 
dependence on the right-hand side, with any τ 
smaller than some sufficiently small τ0 the 
trajectories of (9), (10) concentrate in some small 
closed disk D1’ ⊂  D0. In their turn the trajectories of 
(8) starting from D1’ terminate at O in time T. With 
sufficiently small τ1 ≤ τ0, τ ≤ τ1, the trajectories 
terminate in some other small disk D1’’ in time T, 
D1’’ ⊂  D1’. Let D1 be some disk containing all the 
trajectories’ segments starting from D1’ with t 
varying in the range [0, T], τ ≤ τ1, D1 ⊂  D0. 
Obviously, with τ ≤ τ1 any trajectory, which starts 
from D0, enters D1 in the time T to stay there forever. 
Note that system (9), (10) is invariant with respect to 
the transformation 

Gκ: (t, τ, x1, x2) v ( κt,  κτ, κrx1, κ
r-1x2), 

for any κ > 0. There exists such κ > 1 that GκD1 ⊂  
D0. Thus, with τ ≤ κτ1 all trajectories starting from 
GκD0 enter GκD1 in the time not longer than κT and 
then proceed into D1 in time not longer than T to stay 
there forever. In particular, it is true also for τ ≤ τ1. 
Thus a set sequence D1 ⊂  D0 ⊂  GκD0 ⊂  Gκ

2D0 ⊂  ... 
covering the whole plane is constructed. Hence, 
with τ ≤ τ1 all trajectories enter D1 in finite time to 
stay there forever. 
Let D1 ⊂  { x1, x2 | |x1| ≤ c1, |x2| ≤ c2}, and let τ be 
some arbitrary sampling step. Applying Gκ with κ = 
τ/τ2 achieve that with the sampling step τ any 
trajectory enters the region {x1, x2| |x1| ≤ (c1/τ2

r) τr, 
||x2| ≤ (c2/τ2

r-1) τr-1} to stay there forever. Lemma 2 is 
proven. � 
Remark. Since r > 2 can be any real number, Lemma 
2 provides the first published example of a non-
integer real-sliding order. 
 

2.4 Nonlinear disturbance observer 

The sliding variable dynamics (7) is sensitive to the 
unknown bounded term )()),),((( tgtttxf =σ , which 
is assumed to be smooth with | gIII | ≤ L. In order to 
estimate )(tg  the modified 2nd order differentiator 
(Levant, 2003) is used  
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and )()( 1 tztg =  in a finite time, if the sliding 
variable σ and control u  are measured without noise. 
Suppose that σ and u are measured with some 
Lebesgue-measurable noises bounded by 0≥ε , then 
it is can be shown that there exists 0>µ  such that 
(Levant, 2003) 

3/2
1 )()( µε≤− tgtz   (13) 

 

2.5 Smooth High Order Sliding Mode Control 



     

Consider a sliding-variable dynamics (7) with 
smooth )(),( tgtf =σ . The problem is to design 
control u  providing for the compensated 

−σ dynamics in (8). The result is given in the 
following Theorem. 
Theorem. Let r = 3, α1, α2 > 0, and | gDDD | ≤ L.  Then 
the closed-loop system (7) controlled by the smooth 
control function 

∫
−− −−= τσσασσα dsignsignzu rrrr )()( /)2(

0
/)1(

11  (14) 

where z1 is the output of the disturbance observer 
(11) is finite-time stable and   
•  If )(tσ  and u(t) are measured with some 

Lebesgue-measurable noises bounded by 0>ε , 
then inequality   γεσ ≤)(t  is established in 
finite time for some  constant 0>γ  depending 
exclusively on the parameters of the controller. 

•  Let τ > 0 be the sampling interval and the noises 
be absent, then the inequality 3)( µτ≤σ t  is 
established in finite time for some constant 0>µ  
depending exclusively on the parameters of the 
controller. 

The proof follows from the overall homogeneity of 
the closed system (7), (12), (14) and is similar to the 
proof of Lemma 2. Let w0=z0-σ, w1=z1-g, w1=z2- gD . 
The following transformation is used: 
Gκ:  (t,τ,ε,x1,x2w0,w1,w2)  

v  ( κt, κτ ,κ3ε,κ3x1,κ
2x2,κ

3w0,κ
2w1,κw2). 

 

2.6 Smooth Second Order Sliding Mode Guidance  

At this moment, the chosen intercept strategy 
transforms the intercept problem to an output 
regulation problem, which can be considered as a 
fundamental problem in geometric methods of 
control synthesis. The control goal of the output 
regulation problem is to stabilize 2,1 , =iiσ  and to 
satisfy the condition 0  , <≥∀ ro Vtt  provided given 
limits on control input, max LL nn ≤ , and known 
bounds of uncertainties variations. We wish to solve 
this problem without explicit estimation of 
uncertainties but to apply robust control methods, 
where control action will automatically counteract 
the influence, which steers the system away from 
specified path. A number of solutions to this problem 
using SMC theory is developed in the last decade. 
Each of them can be used to create a reference 
closed-loop model to be enforced in presence of the 
unmodeled at this stage vehicle dynamics of a 
homing interceptor. The important issue here is to 
design a continuous/smooth control, )(tnLc , to be 
enforced for the actual missile normal acceleration 

)(tnL . That’s why absolute robustness to 
uncertainties and finite time convergence are traded 
for approximation of an ideal discontinuous SMC 
law by a linear saturation function (see Moon, & 
Kim, 2000; Shkolnikov, Shtessel, et. al., 2000). In 
this case the output is robustly regulated to a small 
domain of convergence around zero.  

In this paper, we employ smooth second order sliding 
mode control (14) with 3=r . From (6) the σ-
dynamics is identified as (we omit the subscript) 

LMrTr nrVcArVV )cos()2/(/ 0, γλσ λλ −−−+−=D  (15) 
so the commanded acceleration, Lcn , for the 
interceptor normal acceleration Ln  is selected to be 
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where λ,
ˆ

smoothTA  is estimated using (12). 
The homing (when a seeker is activated and the 
designed guidance law is executed) close loop 
interceptor kinematics (3), (6), (14) is derived as 
follows: 
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Since the initial condition 0)0( <<= MVr , it is easy 
to identify 0c  such that gor tttV ≤∀< 0)( , where got  
is time required for the interceptor to hit the target. 
So, the guidance law (15) based on asymptotic 
smooth second order sliding mode control inevitably 
guarantees hit-to-kill intercept. 
 

3. INTEGRATION OF GUIDANCE AND FLIGHT 
CONTROL SYSTEMS: 2-LOOP SECOND ORDER 

SMC APPROACH 

3.1 Missile Interceptor Dynamics 

The following pitch plane model of kinetic energy 
kill vehicle (KEKV) without account for gravity (see 
Shkolnikov, Shtessel, et. al., 2000) is considered 
assuming the model to be affine in controls, i.e. in 
case of only aerodynamic control ( eδ  is a virtual 
deflection, which is allocated by the fin’s mixing logic) 
we have 
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where αθγ −=M  is the flight path angle, Ln  is a 

normal acceleration, 
m
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m
XA zx == , , 2

2
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)(),(),( tCtCtC mzx ∆∆∆  are the external disturbances. 
It’s also assumed that the model (18) is of minimum 
phase. In case of aerodynamic control, it means that 
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fins are employed. The actuators have the highly 
nonlinear dynamics with the relative degree equal to 
one, which, after mixing control commands to 
individual actuators actuator, can be presented as 

( )uta eee −−= δδδ ),(D ,  (20) 
where the nonlinear uncertain term ),( ta eδ  is allowed 
to be non-smooth but bounded. 

3.2 Model Behavior of the Homing Loop 

Now, the problem is to design the control input to the 
actuator, )(tu , in order to enforce the given closed 
loop performance of a homing loop robustly to 
uncertainty of vehicle dynamics. Under the second 
order smooth asymptotic SMC guidance (15), (16) 
the closed-loop λV -dynamics are  

)2/(0 rVcV r=λ
D   (21) 

It was shown in the work of Shkolnikov, Shtessel, et. 
al., 2000) by simulations that even in presence of 
uncompensated λ,TA  the closed-loop λV -dynamics 
enforced by the traditional SMC guidance can 
provide for the reliable target intercept. The model 
behavior (21) should be robustly enforced by control 
u in presence of vehicle dynamics uncertainties and 
disturbances and target maneuvers represented by 
target acceleration components λ,TA  and rTA , . This 
problem is addressed via SOSM approach (see 
Levant 1993, 1998, 2001, 2003; Fridman 2001, 
2003) and a two-loop controller structure (see 
Shtessel, Buffington, and Banda, 1999).  

3.3 Outer Loop SMC Design 

Now we consider the composite state space of the 
systems (3) and (18). If we hold  

( )rVcV 2/00 −= λσ D   (22) 
at zero, then even under small residual perturbation, 

Nt ≤|)(| 0σ , an acceptable closed-loop performance 
that leads to the hit-to-kill intercept can be achieved 
(see Shkolnikov, Shtessel, et. al., 2000).  
Following the SMC approach, we call the constraint 
(22) to be kept at zero as the sliding manifold in the 
outer loop, where 0σ  is the sliding quantity. To 
stabilize 0σ  to zero, its dynamics is identified 
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One can rearrange the terms in (23) and write it in 
the short cut notation as 

LM nDD )cos(0 γλϕσ −−= ,  (24) 
where  
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Designing a smooth second order SMC (13) in terms 
of LcnD  (“jerk” command), we obtain the following 
command on missile normal jerk cLn  D  
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Although, the inner loop second order sliding mode 
control can be designed to track LnD , it is more 
convenient to track cq , a command for the pitch rate, 
since the pitch rate is measuring accessible. From the 
interceptor dynamics (18) we identify  
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where V  is an interceptor speed (magnitude), and 
αT  is known as the turning rate coefficient 
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Considering αT  as a known slowly varying quantity 
(that is true for the majority of intercept scenarios), 
we finally obtain the following profile for the 
interceptor pitch rate to follow 
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Implementing the pitch rate command it necessary to 
compute λVD , since ( )rVcV r 2/00 −= λσ D . It can be 
done using the first order exact differentiator (see 
Levant 1998, 2003), or the first order robust-to noise 
differentiator based on nonlinear dynamic sliding 
manifold (NDSM) (see Krupp, Shkolnikov, & 
Shtessel, 2000), where NDSM is developed to 
incorporate a low-pass nonlinear filter in the observer 
structure producing a robust to noise differentiator. A 
robust differentiator of a given signal, )(tx , polluted 
with noise, has the form 
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where the parameters should be appropriately 
selected in accordance with the upper boundary for 

Ltx ≤)(DD . Apparently, when the 2-sliding mode, 

0== oo JJ D , is established, we have the estimation 

error dynamics )(5.0 esignebe −=D , which converges 
to zero in a finite time. Thus, a command on missile 
maneuver is obtained in terms of pitch rate command 

cq . To obtain this command we had to consider the 
composite state space of engagement kinematics and 
vehicle dynamics. The inner loop control is designed 
next to robustly enforce cq  in presence of 
uncertainties and disturbances. 

3.4 Inner Loop Second Order SMC Design 

The regulated output in the inner loop is the pitch 
tracking error 

qtqe cq −= )( .  (29) 
From (18) and (20) we determine that the relative 
degree of the input-output dynamics for qe  

( ) uaT
V
T

e nq (.))()( 21
1 ⋅−⋅= − ωϕ α

α
DD ,  (30) 



     

is equal to two, where (.)1ϕ  is a nonlinear, time-
varying uncertain bounded term. Thus, one can apply 
the SOSM approach (see Levant 1993, 1998, 2003) 
to provide for finite time convergence of the tracking 
error qe  to zero robustly to time-varying additive 
uncertainty )(1 ⋅ϕ  and multiplicative uncertainties of 

airframe dynamics, )()(22 ⋅=⋅= e
m

yy
nn C

I
Slq δωω  ( nω  is 

an equivalent undamped natural frequency of 
airframe) and actuator dynamics ),( taa eδ=  
(actuator bandwidth). The only requirement is to 
know the limit of )(1 ⋅ϕ  variations, and the nominal 

value and sign of the term )()(1 2 ⋅⋅ a
V nω . For instance, 

SOSM that provides convergence of qe  to zero in 
finite time in presence of bounded uncertainties can 
be designed in a format (see Levant 1993, 2001) 
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In order to avoid differentiation of qe  control (31) 
can be also designed based on NDSM (see Krupp, 
Shkolnikov, & Shtessel, 2000) as follows:  
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where J  is the nonlinear dynamic sliding quantity, 
the nominal values for uncertainties )(2 ⋅nω  and )(⋅a  
are used, and the coefficient ρ  is selected according 
to the upper absolute limit for additive uncertainty 

)(1 ⋅ϕ . Thus, using only output feedback qe , the 
control voltage (32) to the actuator (20) provides for 
the output qe  convergence to zero in a finite time. 

4. SIMULATION EXAMPLE 
Simulation results of KEKV using smooth SOSM 
guidance and SOSM/NDSM-based autopilot are 
available and are omitted for brevity. 

5. CONCLUSIONS 
An integrated two-loop guidance and flight control 
system is designed based on second order sliding 
mode control to robustly enforce hit-to-kill guidance 
strategy in presence of target maneuvers, 
atmospheric disturbances, and dynamic uncertainty 
of airframe-actuator. The zero miss target intercept is 
achieved with the reduced acceleration ratio 
requirements due to prolonged stability of the 
homing loop. 
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