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Abstract: This paper is concerned with a problem of control in the queuing systems. 
Rather than deal with mean waiting time or average queue length, which is the most 
often used approach to this problem, it concentrates on transient states and 
minimizing probability of long queue. First a model of a queuing system with 
controlled service intensity is analyzed. Subsequently, a system with multiple service 
stations that can be switched in or off is introduced. For both systems, the optimal 
control problem is formulated in L1 space and necessary conditions for optimal 
control are presented. Copyright © 2005 IFAC 
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1. INTRODUCTION 

Despite long history of research (see eg. (Gross and 
Harris, 1998; Medhi, 2003) and references therein) 
and rich literature devoted to problems of modeling 
of queuing systems, most of it concentrates either on 
theoretical aspects which applicability is arguable, or 
models based on analysis of mean probabilities or 
average length queue (Sennott, 1999; Athuraliya et 
al., 2001, Hollot et al., 2002). However, due to rapid 
development of applications, especially in computer 
networks or telecommunication systems, analysis of 
transient states becomes increasingly important. In 
most of the literature, however, transient states are 
analyzed only in context of most standard models or 
in context of average length queue or waiting time. 
Moreover, the results published so far address mainly 
linearized models, while this paper deals with 
nonlinear ones. 

Although the main applications of the work seem to 
be in the fields of computer network or 
telecommunication systems analysis and design, the 
models are referred to as queuing systems, to 
underscore the theoretical aspect of this paper. 
Moreover, for the same reason, instead of using 
Active Queue Management term, standard for TCP 
networks modeling, the concept of general control is 
used, which highlights the original field of control 
theory that is applied for analysis. 

2. SERVICE RATE CONTROL. 

Let us suppose that in the analyzed queuing system 
service rate can be controlled. It can be achieved, for 
example by directing incoming requests to stations 
that have different performance (with cost of use or 
leasing them increasing with growing efficiency). 
The system description can be presented in the 
following way: 
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where Pi(t) denotes the probability that the length of 
the queue at the time instant t is equal to i, λ, λi, µ  
and µi are model parameters, 0 ≤ u(t) ≤ umax 
represents control effect on the service intensity. It 
seems justifiable to assume that the difference in the 
efficiency will be visible only for small length of the 
queue. Though usually service and arrival rates are 
assumed to be independent of queue length, here they 
can vary for the first l equations to underscore wide 
applicability of the method presented in the paper. 

Though similar examples could be found e.g. in 
(Sennott, 1999), In this paper a unique performance 
index will be introduced to evaluate quality of control 
system. The aim is to minimize probability of a 
queue longer than arbitrarily chosen length l, 
simultaneously taking into account the cumulative 
cost of the control, i.e. 
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Arbitrary parameter l determines decomposition 
illustrated in the Fig.1. 

Such infinite dimensional system description is very 
similar to the models analyzed in biomedical 
modeling (Swierniak et al., 2003) that are based on 
branching processes. Applying methodology 
developed for dealing with those models it is possible 
to both find the transient states for this system and 
solve the optimal control problem. 

To make analysis of such models possible it is 
convenient to present it in the form of a block 
diagram shown in Fig.1, effectively decomposing the 
model into two parts The first one, of finite 
dimension, does not require parameters to meet any 
particular assumptions. The second subsystem is 
infinite dimensional, with tridiagonal system matrix, 
and does not contain terms containing control u(t). 

Using methods similar to that shown in our previous 
works devoted to biomedical modeling (Swierniak et 
al., 1998, 1999), it is possible to derive the following 

transfer function in the model (1): 
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  (3) 
Moreover, if the initial length of the queue is k, i.e. 
initial condition is given by. Pk(0) = 1, Pi(0) = 0 for 
i ≠ k, 
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where )(tP k
Σ is free component, equal to 0 if k < l, 

otherwise defined by  
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  (5) 
Ik(.) denotes modified Bessel function of the k–th 
order. 

P+(t) is a forced component given by 
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where kΣ is given by the same relation as )(tP k
Σ  for 

k = l with Pl(0) set to one. 

The system description (1) in the form of infinite 
number of ODEs is not very convenient for the 
optimization procedure. Instead, it can be 
transformed into integro-differential one. 

Let us denote 
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Figure 1. Decomposition of the general system model 
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Let us also assume the initial conditions Pi(0) = 0 for 
i > l − 1 (the assumption is justified in queuing 
systems). Then, the last equation in the first 
subsystem, influenced directly by control, as 
presented on Fig. 1, can be transformed into an 
integro-differential form: 
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where k1(t) is the inverse Laplace transform of K1(s), 
given by 
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Similarly, other equations can also be rewritten in the 
same way leading to the transformation of the model 
(1) into the following form: 
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where (.)
~

(..), fh - vector functions 
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for 1 ≤ k < l – 1 
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for k = 0,1,…, l − 1. 

It is important to notice that, although the 
performance index (2) seems to consist of two 
components - a sum and an integral, the sum actually 
involves another integral that stems from (4)–(5). 
Therefore, it should be rewritten to emphasize this 
relation. Substituting (4) and (5) into (2) we obtain: 
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A number of formulations of necessary conditions for 
the optimization problem for dynamical systems 
governed by integro-differential equations can be 
found in literature (e.g. Gabasov and Kirilova, 1971; 
Curtain and Zwart, 1995). However, they usually 
either are too general to be efficiently applied in such 
particular problem or have too strong constraints for 
example smoothness of the control function. 
Nevertheless, following the line of reasoning 

presented in (Bate, 1969), it is possible to derive the 
necessary conditions for optimal control: 
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 pi(T ) = 1, i = 0,1,..., l−1 (18) 
p(t) – adjoint vector. 

Taking into account the control constraint and 
bilinear form of (11)–(13), it can be proved that, in 
order to satisfy (16), the optimal control must be 
bang-bang one. Then, to find optimal number of 
switches and switching times, a gradient method can 
be developed, following the line of reasoning 
presented in (Smieja et al. 2000). 

3. CONTROLLED M/M/C/K SYSTEM 

The standard description of the M/M/c/K queuing 
system is given by (Kleinrock, 1976) 
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where 
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The control in this case can be interpreted as 
switching on and off appropriate service lines. For 
the sake of simplicity, let us assume that there are 
only two of them available, i.e. u(t) = {1,2}. The 
problem of optimal control can be defined as 
minimizing the performance index (2) for the system 
described by  
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To find the conditions that optimal control should 
satisfy and subsequently apply them to find a 
solution, it is convenient to assume that u(t) ∈ [1,2].  



Then, in order to derive necessary conditions 
standard maximum principle can be applied 
(Pontryagin, ). The Hamiltonian is given by 
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where p denotes the adjoint vector. The conjugate 
equation takes the following form 
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Since the control u is bounded and Hamiltonian is 
linear with respect to it, the optimal control must take 
a bang-bang form. Actually, if one goes back to the 
initial problem formulation, such solution is the only 
admissible. However, proceeding in the way shown 
here, one can develop a gradient method for finding 
the optimal solution. 

The case with more service stations is much more 
complex, since the control involved can take values 
from a set of more than two elements. Therefore, in 
addition to finding optimal number of switches and 
switching times, the decision must be made about 
how many stations should be switched on or off. In 
that case, the optimization problem must be 
reformulated as the searching for optimal switches 
between different system structures, while the general 
system description for the model with n available 
service lines would be given by: 
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u(t)∈{1,2,…,n} 

However, the solution to the optimization problem 
stated above is not yet available. Nevertheless, since 
control variable has to take integer values, once again 
it can be tested numerically. 

4. THE GRADIENT METHOD 

Let u* denote the bang-bang control (u*=u for the 
model given in the section 2, while for the model 
from section 3   u*=u – 1) 

Let τi denote the i-th switching time. Then the control 
u* can be presented as 
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where 1(.) is a unit step function, M denotes the 
number of switches. Even and odd subscripts 
correspond to switching on and off, correspondingly 
(therefore M can be assumed to be an even number, 
since it is always possible to force switching off at 
the end of time horizon). 

Let H~ denote Hamiltonian given by (22) in the 
section 3 or the argument of arg min in (16). It is 
crucial to notice that 
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From (Duda, 1995) it follows that: 
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where δτi denotes the variation of the switching time 
τi. 

Hence, to minimize the performance index J  
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 j = 1,2, …,M, kj - positive number 

Taking this into account the following algorithm can 
be applied: 

1. Assume number of switches, as well as initial 
switching times. 

2. Solve the equation describing the system dynamics 
for bang-bang control with assumed switching times. 

3. Compute p(t) from the adjoint equation (25) 
integrating it backward in time. 

4. Calculate values of δτi  from (29). 

5. Compute new switching times τi + δτi .  

6. If two switching times are close to each other, 
reject them and modify appropriately the number of 
switches. 

7. Repeat steps 2-5 until stop condition is satisfied, 

e.g. εδτ <∑
=

M

j
j

0

2)( , where ε is small given number. 

 

In both problems, it is assumed that there are no 
singular solutions. Since their non-existence is not 
proven here, obtained results can be regarded only as 
suboptimal (optimal in the set of admissible 
switching controls). One must remember, however, 



that in the case of infinite dimensional model and 
bang-bang control, finding the optimal number of 
switches is almost impossible. Even for finite 
dimensional problem, given as the second problem, 
the sufficient conditions are not known to the author. 
Nevertheless, starting from arbitrary large number of 
switches (justified by model application) the 
suboptimal results should be satisfactory. 

6. CONCLUSIONS 

In this paper we are concerned with two different 
models of queuing systems. Explicit control variable 
has been introduced to both of them, making it 
possible to define and solve optimization problem 
with the performance index defined in l1 space of 
summable sequences. In both cases, the resulting 
solution is in the form of the open-loop bang-bang 
control. A gradient method has been proposed to find 
optimal switching times for both models. 

Contrary to the approach widely used in the 
literature, addressing average queue lengths or 
waiting times, the method proposed in the paper deals 
directly with state variables. 

In the first, infinite-dimensional model, control has 
been used to change the service rate. It was built 
upon the general M/M/1 model, with the underlying 
assumption that the service rate can be increased only 
if the length of the queue had not crossed som 
threshold level. For that system, basing on model 
decomposition, it was possible to transform its 
description into integro-differential form. That, in 
turn, allows solving an optimal control problem The 
methodology presented in the paper makes it possible 
to address more general problem, in which control is 
multidimensional, i.e. the the rate of service can be 
independently changed for different queue lengths. 
Using exactly the same way of reasoning as 
presented in this paper, it is possible to derive 
necessary conditions for optimal control in that case. 

In the second, finite-dimensional model, control 
consists in switching on/off additional service 
stations. The case of two service stations has been 
addressed, while more general model has been 
proposed, to be analyzed in the future.  
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