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Abstract: The technique of dynamic data reconciliation has been previously studied in the 
literature and shown to be an effective tool to better estimate the true values of process 
variables by using information from both measured values and process models. Real-time 
implementation of dynamic data reconciliation involves solving complex optimization 
problem, leading to large computation time. This paper presents a study on the use of a 
dynamic Autoassociative Neural Network (AANN) for dynamic data reconciliation. 
Once trained, the AANN can be directly used for online signal validation. Closed-loop 
performance of the AANN for both linear and nonlinear processes was evaluated using 
simulations of two storage tank processes. The AANN provided accurate estimates of 
measured values for the two processes studied in this investigation. Copyright © 2005 
IFAC 
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1. INTRODUCTION 
 
Signal validation plays an important role in real-time 
plant operation since measured signals of process 
variables are often contaminated by measurement 
errors that include random and nonrandom errors. 
The random error is often referred to as measurement 
noise that can be approximated by a Gaussian 
distribution. On the other hand, the nonrandom errors 
include measurement outliers and biases. When the 
corrupted measurements are used for process 
monitoring and control, the knowledge of the true 
state of the process is inaccurate and the performance 
of controllers may be deteriorated. Therefore, it is 
imperative to validate the measured signals prior to 
their use as inputs to the controllers or in 
management system. The estimation of system 
variables is traditionally performed using filters such 
as Exponentially Weighted Moving Average 
(EWMA) or Moving Average (MA) filters. These 
filters use measurement temporal redundancy, 
meaning that past measurements are used to estimate 
the current state of the process. The simple EWMA 
or MA filter performs well for steady-state or slow 

dynamic processes. However, for processes having 
significant dynamics and for the purpose of detecting 
nonrandom measurement errors, model-based filters 
are preferable. The model-based filters employ 
process dynamic models, such that both measurement 
temporal and spatial redundancies are used to 
estimate the current state of the dynamic system. A 
well known model-based filter is the Kalman filter 
that employs stochastic linear state-space process and 
measurement models. The most attractive advantage 
of the Kalman filter lies in its optimal estimation in 
the sense of minimum mean squared prediction errors 
(Kamen and Su, 1999). However, the optimality of 
the Kalman filter requires two restrictive 
prerequisites, linear state-space models and 
independent Gaussian white noise for both process 
and measurements. In its implementation, the 
Kalman filter is commonly tuned by adjusting the 
process and measurement noise covariances and 
treating them as design parameters. For nonlinear 
processes, Extended Kalman Filters (EKF) are used 
whereby nonlinear process models are linearized at 
each sampling time. However, in chemical 



 

engineering, the applications of EKF have met some 
problems, such as divergent and unreliable results 
and difficulty in tuning the filter (Wilson et al., 
1998). 
 
An alternative approach to the Kalman filter for real-
time plant signal validation is to use Dynamic Data 
Reconciliation (DDR) technique. Data reconciliation 
integrates information originating from 
measurements and process models to provide more 
accurate estimates of process variables. More 
importantly, the reconciled data are consistent with 
relationships that exist between process variables, 
such as mass and heat balances. Data reconciliation 
techniques were initially developed for steady-state 
processes in order to calculate process mass and heat 
balances (Kuehn and Davidson, 1961; Mah and 
Stanley, 1976; Crowe et al., 1983; and Crowe, 1986). 
Recent work (e.g., Darouach and Zasadzinski, 1991; 
Liebman et al., 1992; Albuquerque and Biegler, 
1996; Bagajewicz and Jiang, 1997) extended the 
concept of data reconciliation for dynamic processes. 
In the application of data reconciliation techniques, 
measured variables are optimally adjusted to satisfy 
exactly process models and constraints. In practice, 
however, both measurements and process models are 
prone to errors such that the following objective 
function is minimized to perform DDR.  
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where ty  is a vector of measured values of process 
variables at time t , tŷ  is a vector of reconciled values 
of the M measured process variables, V is a 
covariance matrix of the measurement error. t tˆ ˆ( , )f y z  
is a functional vector of process algebraic or 
discretized differential equations, tẑ  is a vector of 
unmeasured variables or model parameters 
simultaneously estimated by the DDR algorithm. 

t,l t ,l t ,u,  ,  y z y and t,uz  are vectors of lower and upper 
bounds. Ω is a covariance matrix of model errors 
whose elements are often treated as tuning 
parameters due to the difficulty to determine them. 
 
The benefits of using DDR for real-time process 
monitoring and control have been reported. 
Ramamurthi et al. (1993) proposed that DDR led to 
better closed-loop performance of nonlinear 
predictive controller. Soderstrom et al. (2000) 
implemented a real-time dynamic data reconciliation 
strategy to improve inventory calculations for a 
diluent plant. Abu-el-zeet et al. (2002) claimed that 
DDR, in conjunction with systematic bias detection, 
enhanced a model predictive control scheme. Bai et 
al. (2004) applied a data reconciliation filter 
embedded in PI feedback control loops for the 
control of a binary distillation column, and 
demonstrated that the controller performance was 

significantly improved by the DDR. The benefits of 
using DDR for real-time signal validation include 
improving controller performance, reducing the 
variability of controlled variable at process nominal 
steady-state, estimating unmeasured process 
variables, as well as detecting measurement biases. 
 
The DDR algorithm requires nonlinear programming 
at each sampling time such that long computer time 
may be needed for complex processes. To reduce the 
computation, this paper proposes to train an 
Autoassociative Neural Network (AANN) to directly 
perform data reconciliation. Once trained, the neural 
network can perform data reconciliation without any 
iteration, and the neural DDR becomes more suitable 
for real-time applications. 
 

2. AUTOASSOCIATIVE NEURAL NETWORK 
 
2.1 Architecture of AANN 
 
An AANN is a network having similar architecture as 
a conventional feedforward neural network composed 
of an input layer, hidden layers and an output layer as 
illustrated in Figure 1. The input and output layers 
have the same number of neurons determined by the 
nature of problem being solved. The first and third 
hidden layers, called mapping and demapping layers 
respectively, contain a relatively larger number of 
neurons. The second hidden layer, called bottleneck 
layer, contains less neurons. The AANN is trained to 
reproduce its inputs as its outputs. The key feature of 
AANN is to perform data compression by the 
bottleneck layer. The input layer, mapping and 
bottleneck layers compress the input information to a 
lower dimension, then the demapping and output 
layers regenerate the main underlining features of the 
original information of the inputs. The 
mapping/demapping process enables the network to 
represent the input information in a compressed form 
that can often reveal the essence of the data. For 
training AANNs, the input and the target vectors 
presented to the network are identical, and the mean 
of squared errors between the network outputs and its 
inputs are minimized. After successful training, the 
AANN can be regarded as a filter that can be used for 
filtering random noise and detecting fault sensors for 
steady-state or stationary processes (Kramer, 1992). 

 
Fig. 1. Architecture of AANN. 
 
Du et al. (1997) used an autoassociative neural 
network for nonlinear steady-state data 
reconciliation. They developed a mass-balance-
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related AANN scheme to rectify flow rates and mass 
compositions. The mass balance of a system was 
incorporated directly into the objective function such 
that the redundant information for the measurements 
was taken into account in training the network. An 
identical objective function to Equation (1) was used 
to train the AANN. With the redundant information 
provided by the process models, the performance of 
the AANN is expected to perform significantly better 
than that of an AANN trained using only the first 
term of Equation (1) for measurement noise 
reduction, systematic bias detection, and estimation 
of unmeasured process variables. 
 
2.2 Dynamic AANN for DDR 
 
For dynamic data reconciliation, the static structure 
of the feedforward AANN of Figure 1 must be 
modified to encapsulate the dynamics of the process. 
The AANN architecture of Figure 2 has been 
selected. To capture the dynamics of the process, the 
reconciled output tŷ , delayed a number of times, is 
fed back to the input layer. This AANN incorporates 
both temporal and spatial patterns. In Figure 2, D 
represents the required number of time delays for the 
process output variables, and ut-d, …, ut-d-I represent 
the inputs with time delay of d, d+1, …, d+I.  
 
It is important to note that the number of neurons in 
the input and output layers of the dynamic AANN are 
not necessarily identical as they were in the static 
AANN, but their number is problem-dependent. In 
addition, the number of neurons in each hidden layer 
is determined experimentally. 
Prior information relating the input and output 
variables of the process is used to train the AANN for 
DDR. The objective function to train the network can 
be written as 
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where ( )t t 1 t d t d 1ˆ ˆ, ,...,u ,u ,...− − − −f y y  is a functional vector 
of process dynamic models. In the first iteration in 
training of the dynamic AANN, the output vector fed 
back to the input layer is not known, but can be 
assigned the raw measurements. Then, the network is 
trained until satisfactory convergence criterion is met. 
After the first iteration, the vectors of the network 
outputs are fed back as the inputs, and then the 
network is trained again. After several recurrent 
iterations, the feedback vectors and the objective 
function will not change, indicating the training of 
the dynamic network has been completed. After the 
successful training, the dynamic AANN can be 
incorporated to the plant for real-time data 
reconciliation. 

 
Fig. 2. Architecture of an AANN for dynamic 

system. 
 

3. EXAMPLES 
 
To illustrate the use of autoassociative neural 
networks for dynamic data reconciliation, two 
examples were investigated. One example is a 
cylindrical storage tank process. The other is a 
spherical storage tank process. Both processes are 
controlled by conventional PI controllers. The 
developed dynamic AANNs were used as DDR 
filters to provide better estimates of the controlled 
variable for the controller. The performance of the 
dynamic AANNs was examined with closed loop 
control of the processes as illustrated by Figure 3. 
 

 
 
Fig. 3. Scheme for implementing an AANN for 

signal validation embedded in a control loop. 
 
3.1 Cylindrical Storage Tank Process 
 
The schematic diagram of the cylindrical storage tank 
process is shown in Figure 4. A PI controller was 
used to regulate the liquid level of the tank by 
manipulating the outlet flow. The feed flow to the 
tank was measured but not controlled. The sampling 
interval was 1 min. The nominal feed flow to the tank 
was 1.8 m3/h. Random Gaussian white noise with 
standard deviations σFi=0.09 m3/h for the feed flow 
and σH=0.1 m for the tank level corrupted the 
measurements. The dynamics of the measuring 
device and control valve were neglected. The model 
of the process is given by the mass balance 
 

i o
dHA F F
dt

= −    (3) 
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where H is the liquid height, Fi and Fo are the feed 
and outlet flow rates, and A is the cross-sectional 
area of the tank. 
 

 
Fig. 4. Cylindrical storage tank process. 
 
Under open-loop conditions and with measurement 
noise, the tank was perturbed by random step changes 
in the feed and outlet flow rates. 1000 samples were 
simulated. 90% of the samples were used to train an 
AANN and the remaining 10% was used for network 
validation. An AANN having the structure [5, 6, 3, 6, 
2] determined experimentally, shown in Figure 5, 
was trained by minimizing the objective function 
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where the discretized model of Equation (3) was 
incorporated into the objective function and ∆t 
represents the sampling time interval. 
 

 
Fig. 5. Structure of dynamic AANN for the 

cylindrical storage tank process. 
 
Because the variance of the model error was not 
known, the value of 2

Modelσ  in the objective function of 
Equation (4) was treated as a tuning parameter. For a 
value of 2

Modelσ , the network was trained completely, 
and then tested using the validation data sets. The 
variances of the reconciled tank level tĤ  and the 
reconciled feed flow i,tF̂ , evaluated using the 
validation data set, are presented in Figure 6. The 
variance of tĤ decreased and then increased with an 
increase of 2

Modelσ . When 2
Modelσ  was set to small 

values, the model mismatch distorted the reconciled 
tank level, so that the variance of tĤ  increased 
dramatically. On the other hand, when 2

Modelσ  was set 
to larger values, the measurements were not 
constrained severely such that the variance of 

tĤ approached the variance of the raw values. 
However, the variance of the reconciled feed flow 
was not affected by the change of 2

Modelσ , and nearly 

matched the variance of raw measurements, because 
the noise in the disturbances was damped by the 
inertia of the process and the model had nearly no 
constraint on it. 
 
The optimal value for the tuning parameter 
was 2

Modelσ =9.0×10-4, and the corresponding variance 
of the reconciled tank level evaluated was 

t

2
Ĥ

σ̂ = 
9.72×10-4. Given 

t

2
Hσ = 1.0×10-2, the AANN 

performed very well in estimating the true values of 
the tank level. Using the optimal value of 2

Modelσ  to 
train the network, results of the raw, reconciled and 
true values of the tank level for network training and 
validation for the last 200 data sets are presented in 
Figure 7. 
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Fig. 6. Variance of reconciled tank level and feed 

flow as a function of 2
Modelσ . 
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Fig. 7. Raw, reconciled and true values for tank level 

in network training and validation. 
 
The AANN was then embedded inside the feedback 
loop before the controller calculates the control 
moves. Closed-loop performance of the AANN was 
examined for controller setpoint changes.  Results of 
raw, reconciled and true values for the controlled 
variables as well as the control moves with and 
without the AANN, are presented in Figure 8. The 
reconciled values for the tank level were less noisy 
than the raw measurements and close to their true 
values. In addition, the saturated high-frequency 
oscillations of the control moves were significantly 
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reduced with the embedded AANN filter. It is worth 
noting that the reconciled tank level displayed some 
degree of deviations from the true values after the 
change in setpoint. This is due to the saturation in 
manipulated variables, which resulted in less accurate 
predictions of the AANN. 
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Fig. 8. Closed-loop performance of AANN for 

setpoint changes. Dashed line in manipulated 
variable represents control moves without AANN. 

 
3.2 Spherical Storage Tank Process 
 
The spherical storage tank process, studied in this 
work, is shown in Figure 9. The radius of the tank 
was R = 5.0 m. The nominal feed flow to the tank 
was 60.0 m3/h. A PI controller was used to control 
the tank level by manipulating the outlet flow rate. 
The sampling time was 1 min. The nominal 
measurement noise level for the feed flow rate was 

iFσ =0.5 m3/h, and Hσ =0.1 m for the liquid level. The 
process model for the spherical tank is 

2
i o

dH(2 RH H ) F F
dt

π − π = −  (5) 

 

 
Fig. 9. Spherical storage tank process. 
 
The tank, in open-loop, was disturbed by a series of 
random step changes in the feed flow rate as well as 
in the outlet flow rate. An AANN having the 

structure [5, 14, 7, 14, 2] was trained by minimizing 
the objective function 
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where the disretized model of Equation (5) was 
incorporated into the objective function to train the 
network. The “best” value of 2

Modelσ  used to train the 
network was found to be 0.2, and after successfully 
training it resulted in the variance of the reconciled 
liquid level for the validation data sets was 

t

2
Ĥ

σ̂ = 
2.83×10-4 and the variance of reconciled feed flow 
was 

i ,t 1

2
F̂

ˆ
−

σ = 0.26. Compared to 
t

2
Hσ = 1.0×10-2 

and
i ,t 1

2
F −

σ = 0.25, the network filtered almost 
completely the noise for the controlled variable, but 
for the disturbance variable, the variance of the 
reconciled values was not affected. The raw 
measurements, reconciled and true values for the tank 
level for network training and validation for the last 
400 data sets are presented in Figure 10. It shows, the 
noise in the controlled variable was significantly 
reduced and the reconciled values by the AANN 
performed well in tracking their true values. 
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Fig. 10. Raw, reconciled and true values of spherical 

tank level for network training and validation. 
 
The closed-loop performance of the AANN for the 
spherical tank was examined for step changes in the 
feed flow rate, having magnitudes of -33% and 66% 
of steady state value, and for control setpoint 
changes. Results of raw, reconciled and true values 
for the controlled and manipulated variables for the 
load changes are presented in Figures 11 and results 
for the controller setpoint changes are presented in 
Figure 12. For both cases, the AANN performed very 
well in tracking the true values of the controlled 
variable even if the process had significant dynamic 
changes and the process is nonlinear. In addition, the 
high-frequency oscillations of control moves were 
eliminated. Due to the significant reduction of noise 
propagation inside the control loop, the controller 
was allowed to be tuned more aggressively, such that 
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faster dynamic response of the process was expected 
for load and setpoint changes. As a consequence, the 
performance of the controller was improved by the 
embedded AANN. 
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Fig. 11. Raw, reconciled and true values for the 

controlled and manipulated variables for the 
spherical tank for step changes in the feed flow 
rate. Dashed line in manipulated variable 
represents control moves without AANN. 
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Fig. 12. Raw, filtered and true values for the 

controlled and manipulated variable for setpoint 
changes. Dashed line in manipulated variable 
represents control moves without AANN. 

 
4. CONCLUSION 

 
The dynamic AANN presented in this work has 
shown to be an alternative approach for real-time 
signal validation for dynamic processes. Because it is 
trained by incorporating intrinsic process models, the 
performance of the dynamic AANN is more effective 
for estimation of the current state of the process. 
Although implementation of AANN filters for 
complex processes (e.g., multivariable systems) and 

comparisons for the AANN to DDR using linear 
models are required for further demonstration, we 
believe that the use of this technique can greatly 
enhance plant monitoring as well as controller 
performance. 
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