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Abstract: The paper presents designing of a robust fault diagnosis system for a
catalytic cracking process using artificial neural networks. Identification of the
considered process is carried out by using recurrent neural networks. To achieve
a robust fault diagnosis system, an uncertainty associated with the model is also
taken into account. Neural version of the Model Error Modelling is used to deal
with two main uncertainty sources: unmodelled dynamics and noise corrupting
the data. The proposed approach is tested on the example of catalytic cracking
converter at the nominal operations condition as well as in the case of faults.
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1. INTRODUCTION

Fault diagnosis becomes an important issue in
modern control systems due to their increasing
complexity. An early diagnosis of faults that might
occur in the supervised process, renders it pos-
sible to perform important preventing actions.
Moreover, it allows one to avoid heavy economic
losses involved in stopped production, replace-
ment of elements and parts, etc. The basic idea
of model-based fault diagnosis is to generate sig-
nals that reflect inconsistencies between nomi-
nal and faulty system operation conditions. Such
signals, called residuals, are usually calculated
by using analytical methods such as observers
(Chen and Patton, 1999), parameter estimation
methods (Isermann, 1994) or parity equations
(Gertler, 1999). Unfortunately, the common draw-
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back of these approaches is that an accurate math-
ematical model of the diagnosed plant is required,
so their application is limited. An alternative so-
lution can be obtained through artificial intelli-
gence, e.g. neural networks (Frank and Koppen-
Seliger, 1997; Calado et al., 2001).

The model-based fault diagnosis is built on a
number of idealized assumptions. One of them is
that model of the system is a faithful replica of a
plant dynamics. Another one is that disturbances
and noise acting upon the system are known. This
is, of course, not possible in engineering practice.
The robustness problem in fault diagnosis can be
defined as the maximization of the detectabil-
ity and isolability of faults and simultaneously
the minimization of the uncontrolled effects such
as disturbances, noise, changes in inputs and/or
state, etc. (Chen and Patton, 1999).

In general, methods to achieve and analyze ro-
bustness can be divided into two groups. The
first group of methods considers robustness as a



part integrated into identification process. The
second one identifies a model first without ro-
bustness considerations and then performing ad-
ditional step by adjusting or compensating the
originally constructed model. The paper describes
an approach, which belongs to the second group
of methods. First, the system is identified using
a recurrent network. The architecture details are
given in Section 2. Next, the uncertainty of the
model is obtained by application of Model Error
Modelling performed using feed-forward networks
with delays. This technique is presented in Sec-
tion 3. The proposed approach is tested on the
example of catalytic cracking converter described
in Section 4. Section 5 reports the experimental
results.

2. DYNAMIC NEURAL NETWORKS

An artificial neural network used to model the
system behaviour belongs to the class of so-called
locally recurrent globally feed-forward networks.
Its structure is similar to a multi-layer perceptron
where neurons are organized in layers, but dy-
namic properties are achieved using neurons with
internal feedbacks. One of the dynamic processing
unit realization is a neuron model with the infinite
impulse response filter (Ayoubi, 1994; Patan and
Parisini, 2005). This structure is a generalized
version of the neuron with an activation feedback
model. The block structure of the i-th neuron
considered is presented in the Fig. 1. Dynamics is
introduced into the neuron in such a way that the
neuron activation depends on its internal states.
It is done by introducing a linear dynamic system
— the IIR filter — into the neuron structure. Thus,
the i-th neuron in the dynamic network repro-
duces the past signal value with two signals: the
input u(k) and its output y; (k). The weighted sum
of inputs is calculated according to the formula

s:(k) = wiu(k), 1)

where w; = [wi, ws,... w!] denotes the input
weights vector, n is the number of inputs, and
u(k) = [ui(k),uz(k),...,un(k)]T is the input
vector (T — transposition operator). The weights
perform a similar role as in static feed-forward
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Fig. 1. i-th neuron with IIR filter

networks, namely, together with activation func-
tions are responsible for approximation properties
of the model. Then, the calculated sum s;(k) is
passed to the IIR filter of the order r. Here,
the filters under consideration are linear dynamic
systems of different orders, e.g. the first or second
order. The states of the ¢-th neuron in the network
can be described by the following state equation:

where the state vector x;(k) = [z (k), b (k), ...,
2% (k)]T, 1 € R" is the vector of ones and the state
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transition matrix A; has a form
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Finally, the neuron output is described by
yi(k) = f(bixi(k) + diu(k),g;) (4)

where f(-) is a non-linear activation function,
b; = [bi, b5, ..., bl] is the vector of feed-forward
filker parameters, d; = [bhwy,biwa,...,bjw,],
g: = [g%, gb] is the vector of the activation function
parameters consisting two elements: ¢g; and go,
which are the bias and slope of the activation
function, respectively. In the majority of cases,
the neural activation function f(-) is chosen as a
continous and differentiable non-linear hyperbolic
tangent function

1 — e—92(z—g1)

f(x,91,01) = 1t e o2@—a)’ (5)

where g > 0.

2.1 State-space representation of the network

In this paper, a discrete-time dynamic network
with n time varying inputs and m outputs is
discussed. The description of such kind of dynamic
network with v hidden dynamic neurons, each
containing an r-th order IIR filter, is given by the
following non-linear system:

z(k+1) = Ax(k) + Wu(k) (©)
y(k) = Cf(Ba(k) + Du(k),G)"

where N = v X r represents the number of states,
x € RY is the neural state vector, u € R", y €
R™ are the input and output vectors, repectively,
A € RVXN represents the diagonal weight matrix
A = diag(Ay,..., A,) associated with the neural
state, W € R¥*™ and C € R™*V are the input
and output weights matrices, respectively, B €
R?*¥ is the block diagonal matrix associated with
the feed-forward filter parameters, D € Rv*"
is the transfer matrix, G € R"*? denotes the
activation function parameters, and f: RY —



RY is a non-linear vector-valued function. The
forms of the matrices B, D and G are given
below:

by 0 ... 0
0by... 0
B= o (7)
0 0 ..b,
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bywo 91 9
=" G=|""" (8)
oWy 91 93

The presented structure can be viewed as a net-
work with a single hidden layer containing v dy-
namic neurons as processing elements and an out-
put layer with linear static elements. The LRGF
networks possess many advantages over classical
recurrent networks (Tsoi and Back, 1994; Nelles,
2001). One of them is that keeping stability of
a network during training is much easier than in
the case of recurrent architectures. The interested
reader is referred to (Patan, 2004a; Patan, 2004b).

2.2 Training of the network

All unknown network parameters can be repre-
sented by a vector 8 composed of elements of ma-
trices A, W, C, B, D and G described in details
in Section 2.1. The main objective of training is
to adjust the elements of the vector @ in such a
way as to minimize some loss (cost) function:

0™ = arg min J(0) (9)

oecC

where 8" is the optimal network parameter vector,
J : RP — R represents some loss function to
be minimized, p is the dimension of the vector
0, and C C RP is the set of admissible pa-
rameters constituted by constraints. To minimize
(9) one can use gradient based (Patan and Ko-
rbicz, 2004) or stochastic approximation (Patan
and Parisini, 2005) methods. For training, which
guarantees stability of the model, the reader is
referred to (Patan, 2004a; Patan, 2004b).

3. NEURAL MODEL ERROR MODELLING

The robust identification procedure should de-
liver not only a model of a given process, but
also a reliable estimate of the uncertainty associ-
ated with the model. Two main philosophies exist
in the literature. The first group of approaches,
called bounding error methods, relies on the as-
sumption that identification error is unknown but
bounded. In this framework, the robustness is
hardly integrated with the identification process.
A somewhat different approach is to first identify
the process without robustness considerations and
then consider robustness as an additional step.

This usually leads to least squares estimation and
prediction error methods.

Model error modelling employs prediction error
methods to identify a model from input-output
data (Reinelt et al., 2002). After that, one can
estimate uncertainty of the model by analyzing
residuals evaluated from the inputs. The uncer-
tainty is a measure of unmodelled dynamics, noise
and disturbances. Identification of residuals pro-
vides the so-called model error model. Designing
procedure is described by the following steps:

(1) compute the residual r = y — y,,, where
y and y,, are desired and model outputs,
respectively

(2) collect the data {u;,r;}Y, and identify an
error model using these data. This model
constitutes an estimate of the error due to
under modelling, and it is called model error
model.

(3) construct a model along with uncertainty
using both nominal and model error models.

The paper of (Reinelt et al., 2002) proposes to
carry out step 3 in the frequency domain adding
frequency by frequency the model error to the
nominal model. If the model error model is not fal-
sified by the data, one can use statistical proper-
ties to calculate a confidence region. A confidence
region form an uncertainty band around response
of the model error model.

In this paper it is proposed to form uncertainty
band in the time domain. First, the model er-
ror modelling is performed by using the well-
known multi-layer perceptron with tapped delay
lines, also known as the Neural Network ARX
(NNARX) model (Norgard et al., 2000). Response
of this network is then used to form the uncer-
tainty band in the following way: the upper band

Ty = Ym + Ye + ta¥ (10)
and the lower band
Tl = Ym + Ye — taV (11)

where . is the output of the error model on the
input u, t, is N(0,1) tabulated value assigned to
1 — « confidence level, v is the standard deviation
of y.. It should be kept in mind that y. represents
not only residual but also the structured uncer-
tainty, disturbances, etc. Therefore, the uncer-
tainty bands (10) and (11) should work well only
assuming that signal y. has normal distribution.
The centre of the uncertainty region is the signal
Ym + Ye = y. Now, observing the system output
y, one may take a decision whether the fault
occurred or not. If the y is inside the uncertainty
region the system is healthy.



3.1 Fault detection sensitivity checking

In order to check the fault detection sensitivity, a
number of performance indexes have been applied.

(1) False detection rate defined as follows:

2itta

tfrom —ton

rrd = (12)

)

where 1%, is the period of i-th false fault
detection, t,,, is the benchmark start up time.
This index is used to check the system in
normal operation conditions. Its value shows
a percentage of false alarms.

(2) True detection rate:

_ Zz tid (13)

thor — tfrom

where t!, is the period of i-th true fault de-
tection, tpe is the benchmark time horizon.
This index is used in the case of faults and
describes efficiency of fault detection.

(3) Detection time t4: period of time from the
begin of fault start-up ¢yom to the moment
of fault detection.

4. CATALYTIC CRACKING

The Fluid Catalytic Cracking (FCC) converts
heavy oil into lighter, more valuable fuel products
and petrochemical feedstocks. The general scheme
of catalytic cracking process is presented in Fig. 2
(Moro and Odloak, 1995). It consists of three main
subsystems: reactor, riser and regenerator.

Finely sized solid catalyst continuously circulates
in a closed loop between the reactor and regener-
ator. The reactor provides proper feed contacting
time and temperature to achieve the desired level
of conversion, and to disengage products from the
spent catalyst. The regenerator restores catalytic

products

:l"\
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Fig. 2. General scheme of the fluid catalytic crack-

ing converter

Table 1. Specification of the measurable
process variables

Variable Description

Rar air flowrate to regenerator [ton/h]

Tor air temperature [C]

Ttp feed temperature at riser entrance [C]

Tra temperature of cracking mixture in riser [C]

Trg1 temperature of dense phase at regenerator
first stage [C]

Trg2 temperature of dense phase at regenerator
second stage [C]

Ta1 temperature of the regenerator first stage
dilute phase [C]

Tag temperature of the general dilute phase [C]

activity of the coke-laden spent catalyst by com-
bustion with air. It also provides heat of reaction
and heat of feed vaporization by returning hot,
freshly regenerated catalyst back to the reaction
system. Hot regenerated catalyst flows to the base
of the riser where it is contacted with heavier
feed. Vaporized feed and catalyst travel up the
riser where vapour phase catalytic reactions occur.
The reacted vapour is rapidly disengaged from
the spent catalyst in direct-coupled riser cyclones
and is directly routed to product fractionation in
order to discourage further thermal and catalytic
cracking. In the product recovery system, reac-
tor vapours are quenched and fractionated, yield-
ing dry gas, LPG, naphtha, and middle distillate
products.

The whole catalytic cracking process has been
implemented in Simulink as a FCC benchmark ac-
cording to the mathematical description presented
in (Moro and Odloak, 1995). The benchmark
is available on the website: http://www.enq.
ufrgs.br/recope/FCC. The manipulated vari-
ables of a crucial importance are the flowrate of
regenerated catalyst to the riser and the flowrate
of combustion air to the regenerator beds. The
available measurement variables are presented in
Table 1. Taking into account the expert knowledge
about the technological process one can design the
following relations between variables:

e Temperature of cracking mixture
Trw = s1(Trg2, Ttp) (14)

e Temperature of dense phase at regenerator
first stage

Trgl = SQ(TrglyTar7Rar) (15)

e temperature of dense phase at regenerator
second stage

Trg2 = 53 (Trgla Tor, Rar) (16)

e Temperature of the regenerator first stage
dilute phase

le = 34(T7‘gl) (17)
e Temperature of the general dilute phase

ng = 85(Td1) (18)



5. EXPERIMENTAL RESULTS

5.1 Process modelling

In order to design fault diagnosis system for the
FCC process, a neural network is used to de-
scribe the process at normal operation conditions.
First, the network has to be trained for this task.
Training data has been collected from the FCC
benchmark. The model is designed applying the
LRGF neural network presented in Section 2. The
network has been trained using stochastic approx-
imation method to mimic the behaviour of the
temperature of cracking mixture 14. The neural
model (6) has two inputs T4 and Ty, one output
Tz, and consists of three hidden neurons, with
hyperbolic tangent activation function and second
order IIR filter each.

5.2 Confidence bands

Decision making is carried out using uncertainty
bounds obtained by using model error modeling
presented in Section 3. Many neural architectures
of the NNARX type have been examined by the
trial and error method. The best performing two-
layered network consists of five hidden neurons
and one output element, all of them with hy-
perbolic tangent activation function. Number of
input and output delays was equal to 15. The con-
clusion is that to capture the residual dynamics,
a high order model is required. To determine con-
fidence bands, the 99% significance level was as-
sumed (a = 0.01). The uncertainty region (dashed
lines) along with the output of the healthy system
(solid line) is shown in Fig. 3. The false detection
rate in this case was ryq = 0.0881.
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Fig. 3. Confidence bands and system output at
the nominal operation conditions
5.8 Fault detection

The FCC model makes it possible to generate
a number of faulty scenarios and in this way

Table 2. Performance indexes for the
faulty scenarios.

scenario  start-up time Ttd tat
fi 1900 0.6978 250
f2 1900 0.7184 370
f3 2020 0.6634 80
fa 2000 0.5294 55

to examine the efficiency of the proposed robust
fault detection approach. Four fault scenarios are
proposed according to (Sotomayor et al., 2004):

(1) Scenario f; — 10% increasing of the catalyst
density,

(2) Scenario fo — 15% decreasing of the weir
constant of the first and second stages,

(3) Scenario f3 — 10% decreasing of the CO5/CO
ratio constant,

(4) Scenario fy — 5% increasing of catalyst reac-
tor holdup.

These faulty scenarios have been implemented in
Simulink/Matlab as an additional component to
the mentioned FCC benchmark. The results of
fault detection are presented in Fig. 4, and Ta-
ble 2. In Fig. 4, the uncertainty bands are marked
using grey lines, and system output with the black
line.

6. CONCLUDING REMARKS

The paper presents the robust fault diagnosis
realized by using artificial neural networks. The
LRGF network is used to model the process at
normal operation conditions and the NNARX is
used to identify the error model (residual). The
preliminary experiments show that the proposed
method gives promising results. The worst results
were obtained for scenario f; were true detection
rate was equal to 0.5294. It means that during
occurence of this faulty scenario about half of sam-
ples were inside of the uncertainty region giving
wrong information about a system condition. The
open problem here is to find a proper model error
model. This problem seems to be much more dif-
ficult to solve that finding a model of the system.

REFERENCES

Ayoubi, M. (1994). Fault diagnosis with dynamic
neural structure and application to a turbo-
charger. In: Proc. Int. Symp. Fault Detection
Supervision and Safety for Technical Pro-
cesses, SAFEPROCESS’9/, Espoo, Finland.
Vol. 2. pp. 618-623.

Calado, J.M.F., J. Korbicz, K. Patan, R.J. Patton
and J.M.G. Sa da Costa (2001). Soft com-
puting approaches to fault diagnosis for dy-
namic systems. Furopean Journal of Control
7(2-3), 248-286.



—~
o

)

System output and confidence bands

0 1000 2000 3000

—~
=
=

-
N » [=2] 0 o

o

System output and confidence bands

0 1000 2000 3000

—~
o
~

System output and confidence bands

System output and confidence bands

0 1000 2000 3000

Fig. 4. Fault detection results: scenario f1 (a),
scenario fo (b), scenario fs3 (c), scenario f4

()

Chen, J. and R. J. Patton (1999). Robust Model-
Based Fault Diagnosis for Dynamic Systems.
Kluwer Academic Publishers. Berlin.

Frank, P. M. and B. Koppen-Seliger (1997). New
developments using Al in fault diagnosis. Ar-
tificial Intelligence 10(1), 3-14.

Gertler, J. (1999). Fault Detection and Diagnosis
in Engineering Systems. Marcel Dekker, Inc..
New York.

Isermann, R. (1994). Process fault detection and
diagnosis methods. In: Proc. IFAC Sympo-
sium SAFEPROCESS’9/, Helsinki, Finland
(T. Ruokonen, Ed.). Vol. 2. Pergamon Press.
Helsinki, Finland.

Moro, L. F. L. and D. Odloak (1995). Constrained
multivariable control of fluid catalytic crack-
ing converters. Journal of Process Control
5(1), 29-39.

Nelles, O. (2001). Nonlinear System Identifica-
tion. From Classical Approaches to Neural
Networks and Fuzzy Models. Springer-Verlag.
Berlin.

Norgard, M., O. Ravn, N.M. Poulsen and
L.K. Hansen (2000). Networks for Modelling
and Control of Dynamic Systems. Springer-
Verlag. London.

Patan, K (2004a). Model-based actuator fault di-
agnosis using dynamic neural networks. In:
Proc. 10th IEEE Int. Conf. Methods and
Models in Automation and Robotics, MMAR
2004. Miedzyzdroje, Poland. pp. 743-748.

Patan, K (2004b). Training of the dynamic neural
networks via constrained optimization. In:
Proc. IEEE Int. Joint Conference on Neural
Networks, I[JCNN 2004, Budapest, Hungary.
published on CD-ROM.

Patan, K. and J. Korbicz (2004). Artificial neural
networks in fault diagnosis. In: Fault Diag-
nosis. Models, Artificial Intelligence, Applica-
tions (J. Korbicz, J. M. KoScielny, Z. Kowal-
czuk and W. Cholewa, Eds.). Springer-Verlag,.
Berlin. pp. 330-380.

Patan, K. and T. Parisini (2005). Identification of
neural dynamic models for fault detection and
isolation: the case of a real sugar evaporation
process. Journal of Process Control 15, 67—
79. in press, available on-line.

Reinelt, W., A. Garulli and L. Ljung (2002). Com-
paring different approaches to model error
modeling in robust identification. Automatica
38, 787-803.

Sotomayor, O. A. Z., D. Odloak, E. Alcorta-
Garcia and P. Léon-Cantén (2004). Observer-
based supervision and fault detection of a
FCC unit model predictive control system. In:
Proc. 7th Int. Symp. Dynamic and Control of
Process Systems, DYCOPS 7, Massachusetts,
USA.

Tsoi, A. Ch. and A. D. Back (1994). Locally re-
current globally feedforward networks: A crit-
ical review of architectures. IEEE Transac-
tions on Neural Networks 5, 229-239.



