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Abstract: This paper is concerned with the definition and computation of channel
capacity of continuous time additive Gaussian channels, when the channel is
subject to uncertainty, the noise power spectral density is known and the
input signal is wide-sense stationary and constrained in power. The uncertainty
description of the channel transfer function is described by the set of all channels
which belong to a ball in a normed linear space, known as H® space. Two
uncertainty models are used that are borrowed from the control theory, additive,
and multiplicative. The channel capacity, that we call robust capacity, is then
defined as a maxi-min of mutual information rate in which the minimization is over
the uncertainty set while the maximization is over all transmitted signals having
finite power. An exact formulae for the robust capacity is derived. Part of the
results include a modified version of the water-filling equation, describing how the
optimal transmitter power depends on the channel uncertainty. The conditions are
introduced under which the robust capacity is equivalent to operational capacity.
Finally, an example is worked out to show the effect of uncertainty in case of the
second order system. Copyright (©2005 IFAC
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1. INTRODUCTION

The definition of the channel capacity as intro-
duced by Shannon (1948) is subject to the as-
sumption that the communication channel, source
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signal, and disturbances are perfectly known to
the transmitter and receiver. This is an underlying
assumption that is present in the construction of
most encoding/decoding schemes. The question
that can be asked, is what kind of performance
could one expect if the blocks of communication
system are not perfectly known to the transmitter
and/or receiver? Thus, if the true models are



different from the models assumed in the capacity
computation, then the computed capacity could
lead to overly optimistic performance estimates
of the maximum rate for reliable transmission.

Although, there exists a number of papers that
consider the problem of communication under
uncertainties (for a comprehensive review see
(Biglieri et. al. , 1998), (Lapidoth , 1998), (Medard
, 2003)), this topic did not get sufficient atten-
tion in the communication community. While, the
majority of papers that consider communication
under uncertainty gives the priority to the prob-
abilistic description, we model the uncertainty of
the communication channel through uncertainty
of its frequency response. A paper that consid-
ers the problem similar to ours is (Baker, and
Chao, 1996), which treats the continuous-time
Gaussian channels where the noise is unknown,
and where the transmitted signal, and noise en-
ergy constraints are introduced through their co-
variance functions. Our approach enables also
consideration of noise uncertainty, but through
power constraints on the power spectral densities
of the transmitted signal, and noise that lead to
a completely different solution technique. Most
of the other papers discuss communication un-
der channel uncertainties for random variables
(McEliece, 1983), and vector random variables
(Hughes, and Narayan, 1988). Usually, the chan-
nel uncertainty is defined by introducing addi-
tive disturbance with unknown statistics. Those
channels are commonly called arbitrary varying
channels (AVC). The special case are so-called
Gaussian AVC (GAVC) (Csiszar, and Narayan,
1991). Our approach is different because it defines
the uncertainty through the channel frequency
response in a normed linear space, which is the
right mathematical framework to quantify un-
certainty as shown in robust control theory. On
the other hand our work rely on the results of
Gallager (1968), and Root, and Varaiya (1968).
Namely, Gallager (1968) computed the channel
capacity of the additive Gaussian channel when
the frequency response of the channel, and power
spectral density of the noise are known, while
Root, and Varaiya (1968) proved the channel
coding theorem for the class of unknown white
Gaussian noise channels. Our goal is to unify these
two approaches, to give the explicit formula for
the channel capacity of uncertain colored additive
Gaussian noise channels, to derive the new water
filling formula (that has not been done in (Root,
and Varaiya, 1968), and whose importance was
pointed out in (Medard , 2003)) and to show
that the channel coding theorem, and its converse
found in (Root, and Varaiya, 1968) under certain
conditions still can be applied in colored Gaussian
noise case. Also, we want to emphasize the impor-
tance of uncertainty modeling in the frequency

domain that is very practical, because for most
communication systems, the designers have some
ideas about the form of the frequency response
which is based on previous experience or physical
characteristics of the communication medium.

In this paper the case of continuous time colored
Gaussian noise communication channel when the
true frequency response of the channel is not per-
fectly known is put in appropriate mathematical
setting that enables the derivation of explicit for-
mula for channel capacity. Namely, two basic mod-
els for the description of the channel uncertainty
in frequency domain are borrowed from control
theory, and employed in the channel capacity com-
putation. One is the additive, and the other is the
multiplicative uncertainty model (Doyle, and Tan-
nenbaum, 1992). The choice of uncertainty model
depends on the communication channel at hand.
Although, the capacity formulas are derived for
two specific types of uncertainties, similar deriva-
tions may be used for other types of uncertainties
found in (Doyle, and Tannenbaum, 1992). Thus,
the uncertainty is modeled in the following way.
It is assumed that so-called nominal frequency re-
sponse is known. The nominal frequency response
is based on the previous experience or belief, while
the deviation from the nominal frequency re-
sponse represents uncertainty, and it is described
by a ball in the frequency domain that belongs to
H® (the space of bounded, and analytic transfer
functions in the open right-half plane). The chan-
nel capacity, called robust capacity, is defined as
a max-min of mutual information rate, where the
maximum is over all power spectral densities of
transmitted signal with constrained power, and
minimum is over all frequency responses from the
uncertainty set. The formula for mutual informa-
tion rate follows from the fact that the distribu-
tion of transmitted signal that maximizes mutual
information for additive Gaussian channels is also
Gaussian. The explicit formula for robust capacity
is obtained accompanied with a modified water-
filling formula. The formula for robust capacity
shows how the capacity decreases when the size
of uncertainty set increases. The water-filling for-
mula contains a factor that describes how the un-
certainty affects the optimal transmitted power.
It is concluded that under certain conditions, the
robust capacity is equal to the operational capac-
ity, i.e., the maximal attainable rate over the set
of communication channels. In other words, the
channel coding theorem, and its converse hold for
so the robust capacity.

The rest of the paper is organized in the following
way. In the Section 2, the model of the commu-
nication system is given accompanied by additive
and multiplicative uncertainty description. In the
Section 3, robust capacity formulas are derived for
the case of both uncertainty description. Section 4



gives the conditions under which robust capacity
is equal to the operational capacity for the colored
Gaussian channels. Section 5 gives an example to
illustrate the derived formulas for the capacity,
and power spectral density of the transmitted sig-
nal when the channel can be modeled as a second
order system with uncertain damping ratio.

2. COMMUNICATION SYSTEM MODEL

The communication system is modeled by y(t) =
x(t) * h(t) + n(t), where * represents convolu-
tion, and h(t) is a channel impulse response
with the frequency response H (f). The assump-
tions are the following. The transmitted signal
x = {z(t); —00 < t < +o0}, noise signal n =
{n(t);—co < t < +oo}, and received signal
y = {y(t); —o0 < t < +oo} are wide-sense sta-
tionary processes with power spectral densities
Sx(f), Sn(f), Sy(f), respectively. In addition, the
transmitted signal x is constrained in power, and
the noise n is Gaussian noise whose power spectral
density is known. The frequency response H (f)
of the channel is unknown. The uncertainty of
H(f) will be described by a set in the H> space,
which when endowed with ||.||oc norm defined by
IH(f)]lso = sup; [H(f)|, is a Banach space (see
Fig. 1, and Fig. 2).

2.1 Additive Uncertainty

The additive uncertainty model of the frequency
response H(f) = Hpom(f) + A(f)W1(f) is the
sum of two terms. One is the so-called nominal
frequency response H,om(f) that represents the
known part of H(f), and the other represents
perturbation A(f)Wi(f). The nominal frequency
response Hpom (f) can be obtained, for instance,
by measurement or by applying physical laws
that govern the channel behavior. The transfer
functions Hyom(f), Wi(f), and A(f) belong to
the H> space. Wi(f) is a known stable transfer
function, A(f) is a variable stable transfer func-
tion with ||A(f)|lee < 1, and H(f), and H(f)
have the same number of unstable poles. From
H(f) = Hpom(f) + A(f)Wi(f) it follows that
|H(f) — Hpom(f)| < |Wi(f)], i.c., the uncertainty
set is the set of all H(f) that belong to the ball
centered at Hpom(f) with radius determined by
the magnitude of a fixed known W7 (f). Thus, the
size of uncertainty set depends on the frequency,
and it is determined by |Wi(f)|. The smaller the
magnitude |Wi(f)|, the smaller the uncertainty
set.
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Fig. 1. Additive uncertainty description
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Fig. 2. Multiplicative uncertainty description

2.2 Multiplicative Uncertainty

The multiplicative uncertainty model is described
by cquation H(f) = Huom()(1 + AF)Wi(f)),
where the transfer functions satisfy all conditions
as for the additive uncertainty model. The equa-

tion implies that |HH(f()f) —1| < |[Wi(f)| meaning

that the ratio % at each frequency belongs
to the ball centered at 1, with radius |Wi(f)].
The size of uncertainty set is again determined

by |W1(f)|

3. ROBUST CAPACITY
3.1 Additive Uncertainty

Define the two following sets

A= {80); [ sulr)df < P)

Ay = {ﬁ(f) € H®. H = Hypm + AW
Hyom € H®, W, € H®,A € H™,
lAlle <1}

The set A; is the set of all possible power spectral
densities of transmitted signal, and Ay is the
uncertainty set. The size of uncertainty set will
be determined by using the fact that [|A|l < 1.

Definition 3.1. The robust capacity of a contin-
uous time Gaussian channel, when a transmit-
ted signal x is subject to the power constraint
[ Sx(f)df < P, where Sy(f) is the power spectral
density of the noise, and with channel uncertainty
defined through set As, is defined by

1 | H?
Cr:= sup inf 5/10g (1 + %)df(l)

Sx€A1 HEA>

The region of integration in (1) will be clear
from Theorem 3.2. This definition is a version



of the well-known formula for continuous time
Gaussian channels that was first introduced by
Shannon (1949) for strictly band-limited white
noise channels, and afterward re-derived by Gal-
lager (1968) for colored noise, and not necessarily
strictly band-limited channels. In (1), the channel
capacity is defined as the worst case value of
mutual information rate. Although this may seem
as a conservative approach, it turns out to be the
maximum theoretical transmission rate, i.e., the
operational capacity for uncertain channels which
is proven in (Root, and Varaiya, 1968).

Theorem 3.2. Consider an additive uncertainty
description of H(f), and supposed that

(| Hnom (£)| + W1(£)])?
Sn(f)

is bounded, integrable, and that |Hpom(f)| >
|[W1(f)]. Then the following holds.

(1) The robust capacity of a continuous time
Gaussian channel with additive channel un-
certainty shown in Fig. 1 is given parametri-
cally by

S RS
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where v* is a Lagrange multiplier found via

[~ G ) =7 @

subject to the condition

V*(|Hnom| - |I/V1|)2 - Sn > 0,1/* > 0, (4)

in which the integrations in (2), and (3) are
over the frequency interval over which the
condition (4) holds.

(2) The infimum over the channel uncertainty in
(1) is achieved for A*(f) equals

exp|—jarg(W1) + j arg(Hpom) + jml,

when [|[A*(f)|lcc = 1. The resulting mutual
information rate after minimization is given
by

Sn

o 2

2
inf/log (1 + SxHnom + AWA| )df

where the infimum is over ||Ale < 1.
The supremum of previous equation over A;
yields the water-filling equation

Sn B
(|Hnom| - |VV1|)2

Sk v (5)

Proof. The proof is omitted due to the space
constraint, but is available from the authors upon
request.

The main conclusions that can be drawn from
the previous theorem are obtained from (2), (5).
The first equation shows how the robust capacity
depends on the channel uncertainty, while the
second illustrates the effect of channel uncertainty
on the optimal transmitted power. It can be con-
jectured that robust capacity decreases with the
magnitude of transfer function Wi(f), that is, it
decreases as the size of uncertainty set increases.
If the channel is perfectly known then |[W1(f)| =
0 giving a known formula derived in (Gallager,
1968). This is an intuitive result because the chan-
nel capacity should be determined by the worst
case channel. This follows from the definition of
the channel capacity which determines a single
code that should be good for each channel from
uncertainty set. But, the channel capacity also de-
pends on the water-filling level v*, which increases
when uncertainty increases for constant power P.
To get better insight into the dependence of ro-
bust capacity upon the uncertainty, an example
is considered in the next section. The example
will also show the impact of uncertainty on the
optimal transmitted power through a water-filling
formula (5).

Here, we make some comments on the relations
between |Hpoml|, and |[Wi(f)|. It is reasonable to
assume that in practical cases, |Hpom| > [W1(f)|,
because the uncertainty could represent the errors
in channel estimation. Thus, the second term in
logarithm could go to zero, implying zero capacity,
just if the channel estimation is very poor.

3.2 Multiplicative Uncertainty

Define the following set

As = {I:I(f) € H‘X’;I:[ = Hyom (1 + AWY);
Hypm € H®, Wy € H®, A € H®,
1Ale <1}

The definition 3.1 still applies in this case with
the difference that the infimum is taken over all
frequency responses that belong to As, instead.
Therefore the following theorem holds.

Theorem 3.3. Consider an multiplicative uncer-
tainty description of H(f), and supposed that

o (DILWAUDDE 5 hounded, integrable, and

that |1 (f)| < 1. Then the following hold.

(1) The robust capacity of a continuous time
Gaussian channel with multiplicative channel



uncertainty shown in Fig. 2 is given paramet-
rically by

G L

where v* is a Lagrange multiplier found via

/(V* - [IHnoml(fn |W1|)]2)df =P, (7)

subject to the condition

V[ Hnom|(1 = [W1])]? = Sn > 0,0 > 0,(8)

in which the integrations in (6), and (7) are
over the frequency interval over which the
condition (8) holds.

(2) The infimum over the channel uncertainty in
(1) is achieved at

A" = exp[—jarg(W7) + j]
[A* oo = 1,

and the resulting mutual information rate
after minimization is given by

2
inf/log <1 + Sx|Hn0m‘(Sl + AW, )df

/h%usmmmgwmvﬁ

where the infimum is over ||Alleo < 1.
The supremum of previous equation over Aq
yields the water-filling equation

S -
[ Hnom|(1 = [WA[)]2

Sk + v (9)

Proof. The proof is omitted due to the space
constraint, but is available from the authors upon
request.

Again, similar conclusions can be drawn. It can be
seen that the robust capacity is determined by the
size of uncertainty set |Wy(f)|. Thus, if the pertur-
bation is reasonable enough (|W7(f)| < 1), robust
capacity decreases when the size of uncertainty set
increases. When the channel is perfectly known
(IW1(f)| = 0) the robust capacity is equal to the
classical case. It should be noted that preceding
examples imply that the robust capacity formula
can be applied on other types of uncertainties,

such as H = Hpom /(1 + AW1Hpom).

4. CHANNEL CODING AND CONVERSE TO
CHANNEL CODING THEOREM

In this section, it is shown that under certain
conditions the coding theorem, and its converse
hold for the set of communication channels with
uncertainties defined by sets As, and As. It means

that there exists a code, whose code rate R is less
than the robust capacity Cr given by (2), or (6)
for which the error probability is arbitrary small.
This result is obtained in (Denic et. al., preprint),
by combining two approaches found in (Gallager,
1968), and (Root, and Varaiya, 1968).

First define the frequency response of the equiva-
lent communication channel by

&mwmqm
Sn(f) ’

and denote its inverse Fourier transform by g¢(¢).
Further define two sets, A = {G(f);H(f) e
Ay or Az}, and B := {g(t); G(f) € A, g(t) satisfies
1),2),3)}, where

) ¢(t) has finite duration 9,
) g(t) is square integrable (g(t) € Ls),
3) JX G + [T IG()IPdf — 0 when

o — +00.

o - (

The set of all g(¢) that satisfy these conditions
is conditionally compact set in Lo (see (Root,
and Varaiya, 1968)), and this enables the proof
of coding theorem, and its converse. Note that
the condition 1) can be relaxed (see Lemma 4 in
(Forys, and Varaiya, 1969)).

Theorem 4.1. The operational capacity C' (supre-
mum of all attainable rates (Root, and Varaiya,
1968)) for the set of communication channels B is
given by (2), or (6) and is equal to robust capacity
Cr.

Proof. The proof follows from (Gallager, 1968),
and (Root, and Varaiya, 1968), and details can be
seen in Denic et. al. (preprint).

5. EXAMPLE AND CONCLUSION

To illustrate the effect of the channel uncertainty
on the capacity, we consider the following exam-
ple. The channel is modeled by a second order

transfer function H(s) = s =jw=

Wy
2428w s+w??
72w f. It is assumed that the damping ratio £ is un-
known (£ can take values between 0, and 1), whose
value is within certain interval, o < € < Eup.
This set will be roughly approximated by using
the following procedure. We choose the natural
frequency to be w,, = 900 rad/s, nominal damping
ratio &,om = 0.3, and 0.2 < £ < 0.5 (see Fig.
3). Further, the size of uncertainty set is defined
by |W12| = |Hpom| — |Hiow|, where Hjpy(s) =

2
. Wn - s
s2+28upwnstw? Hnom(s) T 82 26nomwnstw? The

values of {0, = 0.2, and &,,, = 0.5 are deliberately
chosen such that |Hyp| = |Hpom| + |W1] is a good
2

. . w.
approximation of H,,,(s) = T T Thus,
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Fig. 3. Approximation of channel uncertainty set
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Fig. 4. Robust capacity vs. uncertainty

the frequency response uncertainty set is roughly
described by |Hpom | £ |Wi1|. But, [Wi| = |Hnom|—
|Hiow| implies |Hiow| = |Hnom| — |Wi|. That
means that the robust capacity is determined by
the transfer function Hj,,. The uncertainty set
is identified by the range of the damping ratio,
AL = &up — Elow, AE = 0.30 in this particular
case. Notation A¢ = 0 stands for the nominal
channel model. The power spectral density of
the noise is given by first order transfer function
Su(f) = [W(s)]? = |sf—6|2’ s = jw = j27f, where
a =1, =1000 rad/s. The power of transmitted
signal is limited to P =0.01 W. Fig. 4 depicts
the robust capacity for different sizes of channel
frequency response uncertainty sets. It can be seen
that robust capacity indeed decreases with chan-
nel uncertainty. Fig. 5 shows the effect of channel
uncertainty on optimal psd of the transmitter.
The change of optimal bandwidth is negligible,
which can be expected because the uncertainty in
damping ratio does not affect channel bandwidth.
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