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Abstract: In this paper a discrete-time adaptive sliding mode controller for wheeled 
mobile robots (WMR) is presented. The dynamical model with time-varying mass 
has been taken into account. The sliding-mode controller has designed on two 
components, corresponding to angular and position motion, respectively. In order to 
accomplish the robustness against parameter uncertainties (robot mass and moment 
of inertia), an on-line closed loop identification scheme is proposed. In both, angular 
and position motion controllers, on-line estimation of parameters, which depend on 
robot mass, is used. Copyright © 2005 IFAC 
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1. INTRODUCTION1 
 

Different approaches have been proposed in the 
literature for stabilization of wheeled mobile robots 
(WMR) (Canudas de Wit and Sordalen, 1997, 
Canudas de Wit, Siciliano and Valavanis, 1998). The 
control problem of non-holonomic systems when 
there are model uncertainties has been widely 
addressed. Relatively few results have been presented 
about the robustness of WMR control concerning 
model uncertainties and external disturbances. The 
performing control design, using the kinematical 
model of the vehicle does not explicitly take into 
account parameters variation (robot mass and 
moment of inertia) and external disturbances 
(frictions and viscous forces). Therefore, in certain 
situations the kinematics model of the WMR can be 
restrictive for controller design. The kinematical 
model is a simplified representation and does not 
correspond to reality of moving vehicle, which has 
unknown or time-varying mass and frictions. All of 
these have well pointed out in Fierro and Lewis, 
1997. Therefore, the dynamical model seems to be 
more relevant concerning uncertainties The controller 
design using the WMR dynamical model, where 
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uncertainties in the robot physical parameters can be 
explicitly taken into account, tends to interest actual 
researches on this field (Coelho and Nunes, 2002).  
The structural (parameter) and/or un-structural 
uncertainties in the model of the MIMO non-linear 
systems and the difficulties in parameter 
identification, make necessary the design of the 
controller such that the closed loop robustness is 
achieved. It is well known that the robustness to 
structural, un-structural uncertainties and external 
disturbances of the WMR closed loop can be 
achieved with a variable structure controller (Aghilar 
et al. 1997; Filipescu at al. 2003; Yu and Xu 2002). 
Maintaining the system on a sliding surface weakens 
the influence of the uncertainties in the closed loop 
and quickly leads to an equilibrium point. The main 
advantage of the discrete-time sliding mode control is 
with the direct and easy real-time implementation. 
Since the sliding mode control is original from 
continuous time, it is more difficult to choose a 
synthesis in discrete-time. The discrete-time sliding 
mode control (Young et al. 1999; Yu and Xu, 2002) 
is quite different of performing the control design in 
the continuous-time domain. Many implementations 
are based on discretization, with sufficiently fast 
sampling rate, of the controllers designed in 
continuous-time. Discrete-time sliding mode 
controller design is usually based on an approximate 



sliding-mode system evolution due to the non unique 
attractiveness condition and approximate evolution 
on sliding surface (Furuta 1990; Yu and Xu, 2002). 
The robust trajectory tracking problem has been 
addressed in Yang and Kim, 1999 using a continuous 
time sliding mode control technique.  
 
In this paper, the trajectory tracking problem for 
unicycle-type WMR, in the presence of uncertainties 
(time varying mass), has been solved by discrete-time 
sliding mode control law based on the discrete-time 
WMR dynamical model. The asymptotic 
boundedness of the tracking error has been proofed.  
 
The paper is organized as follows. In Section 3 the 
dynamical model of a unicycle-type WMR is 
presented. State apace model, its uncertainties and 
non-holonomic constraint are presented, too. The 
discrete-time state-space dynamic model and the 
output tracking errors of the WMR are given in 
Section 3. Section 4 describes an on-line parameter 
identification scheme. The sliding mode adaptive 
controller, associated to angular and position motion, 
are designed in Section 5 and Section 6. Closed loop 
simulation results are presented in Section 7. 
 
 

2. CONTINUOUS-TIME WMR DYNAMICAL 
MODEL 

 
Figure 1 shows the schema of a WMR, where X’Y’ is 
a mobile frame attached to the unicycle and XY 
defines an inertial reference system. The vehicle 
dynamics is fully described by a three dimensional 
vector of generalized coordinates ( )tq  constituted by 
the coordinates ( ) ( )( )( )ty,tx  of the midpoint between 
the two driving wheels, and by the orientation angle 
( )tΦ  The velocity constraint (non-holonomic 

constraint) of vehicle motion is 0cosysinx =Φ−Φ && . 
 
Assumption 1. The WMR motion is supposed to be 
pure rolling, without of any slipping. 
 
Define by rτ  and lτ  the torques provided by DC 
motors to the right and left wheel, respectively. The 
vehicle is described by the following dynamical 
model (Fierro and Lewis, 1997) 
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where m, I, D, r are the robot mass, moment of 
inertia, distance between wheels and wheels radius, 
respectively. The real mass of the WMR is supposed 
to be time-varying with bounded uncertainty with 
known nominal mass. Due to the time-varying mass, 
the moment of inertia becomes time-depending with 
bounded uncertainty. 
 
 

 
Fig.1. Definition of configuration variables.  
 
Assumption 2. Even if the moment of inertia is 
considered time-varying, the robotic mass is 
supposed to be uniformly distributed all the time. 
 
Let define two parameters corresponding to the 

angular and position motion, such as: ( ) ( )rtI2
Dt =α , 

( ) ( )rtm
1t =π . The real values of the parameters are 

time-varying with upper bounded uncertainties 
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Let 6Rx∈  be the state vector, whose elements are 
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Define the control input corresponding to angular and 
position motion, respectively: lrAu τ−τ= , 

lrPu τ+τ=  
 
 
3. DISCRETE-TIME WMR DYNAMICAL MODEL 
 
The state space representation of WMR and the non-
holonomic constraint will be discretized with the 
sampling period T, replacing the derivative by a finite 
difference and using a zero-order-hold for the control 
inputs 
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( ) ( )( ) ( ) ( )( ) 0kxcoskxkxsinkx 3534 =−                  (5) 
 
k being the kth time interval where the corresponding 
variable is evaluated ( kTt = ). Let ( ) 6Rke ∈  be, the 

vector of output errors: ( ) ( ) ( )kxkxke ref
iii −= , 

where ( ) 6,,1i;kx ref
i L=  is the trajectory to be 

tracked. 
 
 

4. ON-LINE PARAMETER ESTIMATOR 
 

Due to the time-varying of the WMR mass, the 
control input parameters ( )tα and ( )tπ  are on-line 
updated in order to be used in the corresponding 
sliding mode control input. The robustness against 
mass uncertainty will be assured. The maximum 
bounds of control input parameters corresponding to 
angular and linear motion will be used in the 
attractiveness condition of appropriate sliding 
surface. As will be shown in the next sections, the 
attractiveness condition of the corresponding sliding 
surface only on certain interval is satisfied. Outside 
of it, on-line parameter estimates will be used to 
compute the control input. Moreover, in discrete-
time, the sliding condition with some approximation 
is satisfied. When the system is inside of the sliding 
sector or in the neighborhood of sliding surface, the 
parameter updating law can provide convergent 
estimates. Let ( )kSA  and ( )kSP  be two sliding 
surfaces corresponding to the control input for 
angular and position motion, respectively. As 
parameter updating law, the recursive least squares 
method is used. 
 
The control input for angular motion has two terms: 
the first one, denoted compensation part )k(u comp

A  
has to compensate the rotational dynamics; the 
second one, denoted sliding mode part ( )kusm

A , 
corresponds to system evolution inside of sliding 
surface neighborhood. The whole control input for 
angular motion is 
 

( ) ( ) ( )kukuku sm
A

comp
AA +=                                     (6) 

 
The calculus and the steps for getting both 
components of the angular motion control input are 
given in Section 5. Expressing the estimated value for 
angular motion control input parameter, 
( ) ( )kˆkˆ nom α∆−α=α , the next sequence, 

corresponding to recursive least squares method 
(Ljung, 1999; Stoica and Ahgren, 2002) can be used 
to provide an estimation of the uncertainty scalar 
term ( )kα∆  at the kth step 
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( ) ( ) ( ) ( ) ( )1kP1kukL1kPkP A −−−−= α∆α∆α∆α∆  (8) 
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Since just one parameter is estimated, the gain 
( )kL α∆  and the covariance ( )kP α∆  are scalars. 

 
Concerning the position motion control input 
parameter, ( ) ( )kˆkˆ nom π∆−π=π , the same updating 
law is used 
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( ) ( ) ( ) ( ) ( )1kP1kukL1kPkP −−−−= π∆ππ∆π∆π∆  (11) 
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where ( )kL π∆ , ( )kP π∆  have the same meaning as 

previously and ( )kS~P  will be defined later . 
 
Remark 1. For both parameter updating laws, (9) and 
(12), the expression in brackets is valid when the 
system evolutes in the neighborhood of the 
corresponding sliding surface. 

 
 

5. CONTROL INPUT FOR ANGULAR MOTION 
 
In order to design the control input for angular 
motion, the following sliding surface has been chosen 

 
( ) ( ) ( ) 0kA1kAkSA =µ−+=                                 (13) 
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where ( )11−∈µ , 





∈δδ

T
10, 21 . The dynamics 

of sliding surface is given by µ  and by the position 
errors: 1e , 2e . The interval set of 1δ and 2δ  
assures the stability of position errors. If the non-
holonomic constraint corresponding to the reference 
trajectory 
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is taken into account, then the angular error ( )ke3  
vanish when ( )ke1 , ( )ke2  tend to zero. 
 
Remark 2. The sliding surface defined in (13) has 
been chosen such as whenever a sliding mode is 
achieved on it and ( )ke1 , ( )ke2  vanish, the 
orientation angle Φ  tends to its reference value. 



For computing the control input, the following 
attractiveness condition (Furuta, 1990; Yu and Xu, 
2002) has been used: 
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( ) ( ) ( )kS1kS1kS AAA −+=+∆                             (17) 

It assures an approximate sliding mode on the surface 
(13). If for the compensation part of the control input 
the expression 
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is chosen, then, after replacing (6), (13) and (14) in 
(17) one obtains 
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With (19), (16) becomes 
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Introducing the upper bound of the angular motion 
parameter uncertainty, the above second degree 
inequality can be written in the compact form 
 

( ) ( )

( )
( )[ ] 0kS

ku

ku
T

22
A

2

comp
A

max

sm
A

maxnom
2 <−

















α∆+

α∆−α
    (21) 

 

If ( ) 0kusm
A > and 
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T
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2

A α∆> , then 

the sliding-mode part of the control input can be 
expressed as 
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When ( ) 0kusm

A < , the inequality (21) is satisfied for 
 

( )

( ) ( )

maxnom

comp
A

max
2

A

sm
A

ku
T

kS

ku
α∆−α

α∆−

−>                (23) 

 
Remark 3. Both expressions of the sliding-mode part, 
(22) and (23), can be written compactly 
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where ( )11A −∈ρ . 
 

When 
( ) ( )ku

T

kS comp
A

max
2

A α∆≤ , the attractiveness 

condition (16) can not be satisfied. The sliding mode 
part of the control input still can be computed by 
using estimates of parameter α∆ . The recursive least 
square method used to compute α∆ ˆ , given by (7), (8) 
and (9), is convergent only when the system evolves 
in the neighborhood of sliding surface. Therefore, an 
approximate sliding mode condition is satisfied 
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( )[ ] ( ) ( ) ( ) 0kukˆkukˆ comp
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nom ≈α∆+α∆−α        (24) 
 
This approximate is used in order to compute the 
control input for angular motion 
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Remark 4. Using (24), the updating law (9) can be 
rewritten as 
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6. CONTROL INPUT FOR POSITION MOTION 
 
The following sliding surface is proposed 
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(27) 
Starting with the third equation of model (4), using a 
trigonometric equality and the non-holonomic 
constraint (5), the following equality holds 
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Moreover, introducing the expressions of the state 
variables, from state model (4), and using the 
constraint (5), the above equality becomes 
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(30) 
The sliding motion on the surface (27) concerns the 
reduced order system of the robotic model, without of 
3rd and 6th equation. The same attractiveness 
condition (Furuta, 1990) 
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for computing the position motion control input has 
been considered. It assures an approximate sliding 
mode on the surface (27). Consequently of sliding-
mode evolution on (13), the angular state ( )kx3  
tends to hold the following expressions 
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Using (28), the following expression can be obtained 
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With (35) and (29), (25) and (32) become 
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Using (36), (37) and upper bound of position motion 
uncertainty, from (2), the second degree inequality 
can be written  
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P >  and ( ) ( )kS~kS PP > , then  the sliding 

control input for position motion can be expressed as 
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where ( )10P ∈ρ . When ( ) ( )kS~kS PP ≤ , the 

attractiveness condition (31) can not be satisfied. The 
control input still can be computed using on-line 
estimates for π∆ . 
 
Remark 5. The recursive least square method used to 
compute π∆ˆ , given by (10), (11) and (12), is 
convergent only when the system evolves in the 
neighborhood of sliding surface. Therefore, the  
approximate sliding mode condition is satisfied, 
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Remark 6. As result of (40), (12) can be rewritten as 
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When the system evolves in sliding-mode on the 
surface (27), ( ) ( ) ( )1kekxkx 11

ref
44 −δ−=  and 

( ) ( ) ( )1kekxkx 12
ref
55 −δ−= . Therefore, output 

tracking error dynamics associated to the reduced 
order system can be expressed as 
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stable. 
 
 

7. CLOSED LOOP SIMULATION RESULTS 
 
For testing the proposed discrete-time sliding-mode 
adaptive controller, Scout WMR has been chosen. In 
simulations, the following parameters of model (3) 
were used: m=80kg, D=0.34m, r=0.1m, 
I=2,312kgm2, T=0.3s. The moment of inertia has 
been computed assuming the mass uniformly 
distributed. A linear-time varying mass additionally 
to the nominal one has been considered. More 
precisely, the robotic time-varying mass has been 
increased linearly from 80kg to 110kg. The closed 
loop structure, shown in the figure 2, has been tested 
by simulation. The simulation results, shown in 
figures 3 and 4, were obtained for 4.0max =α∆ , 

033.0max =π∆ , The following values have been 
chosen for the constants: 001.0=µ , 

99.0AP =ρ=ρ , 33.321 =δ=δ , 
( ) ( ) 100P0P == π∆α∆ . 



 
Fig. 2. Closed loop block schema of sliding mode-

adaptive WMR control 
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Fig. 3. WMR closed loop response for circular 

reference and initial conditions x1(0)=33; 
x2(0)=33; x3(0)= π /7; x4(0)=-0.5; x5(0)=0.2; 
x6(0)=0.1 
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Fig. 4. WMR closed loop response for “sinusoidal” 

reference and initial conditions x1(0)=3; 
x2(0)=1; x3(0)= π ; x4(0)=-0.5; x5(0)=-0.1; 
x6(0)=-0.2 

 
 

8. CONCLUSIONS 
 

A discrete-time sliding mode adaptive controller for 
trajectory tracking of unicycle-type WMRs has 
presented in this paper. The time-varying mass 
dynamical state space model has been undertaken in 
order to design the controller. Even if as parameter 
uncertainty, only the robotic mass has been 
considered, the proposed controller assures closed 
loop robustness to a wide typology of parameter and 
model uncertainties and external disturbances. Two 
components of the sliding mode adaptive controller 
have been designed, for angular and position motion, 

respectively. The robustness is guaranteed by sliding 
mode controller and by an adaptive parameter 
identification scheme. Controller parameters, on-line 
updated, assure an approximate sliding mode 
evolution even if the attractiveness condition is not 
satisfied and, moreover contribute to an increased 
robustness. Closed-loop simulation results using the 
parameter values of a Nomad Scout WMR were 
presented which show the effectiveness of the 
proposed trajectory tracking controller. 
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