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Abstract: This paper investigates the possibility of obtaining long-into-the-future reliable 
forecasts of observed nonlinear cyclical phenomena. Unsmoothed monthly sunspot 
numbers that are characteristically cyclical with nonlinear dynamics as well as their 
wavelet-transformed and wavelet-denoised series are forecasted through October 2008. 
The objective is to determine whether modelling wavelet-conversions of a series provides 
reasonable forecasts. Two computational techniques – neural networks and genetic 
programming – are used to model the dynamics of the series. Statistical comparison of 
their ex post forecasts is then used to identify the data set and computational technique to 
use under the circumstances. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
The purpose of this paper is to investigate whether it 
is possible to produce reasonable forecasts of 
cyclical phenomena for many periods into the future 
when their wavelet-converted data is fitted using two 
computational techniques – artificial neural networks 
(ANN) and genetic programming (GP). Modelling 
and forecasting real-world nonlinear cycles are 
particularly challenging because their dynamics tend 
to be irregular as well as noisy. Nonlinear models are 
known for their sensitivity to initial conditions. 
Predicted values of input variables thus can only 
deliver poor extended forecasts. Having irregular 
noisy cycles only aggravates the quality of such 
forecasts. It is therefore logical to obtain forecasts 
using “actual” rather than “predicted” values as 
inputs. This is possible when models are specified 
and estimated with lagged explanatory variables 
having minimum lag lengths = the number of periods 
or steps ahead to forecast. It is impossible to estimate 
such models using standard statistical techniques 
because of the large number of degrees of freedom 
lost when forecasting a large number of periods into 
the future. ANN and GP are used instead. They 
deliver forecasts without estimating equation 
coefficients and therefore pose fewer statistical 
problems.  
Sunspot numbers have cyclical behavior and their 
annual averages rank among the most statistically 
analyzed time series. See for example Tong (1990), 

and Lin and Pourahmadi (1998). However, forecasts 
of annual averages may be too aggregated over time 
to really help in decision making, and forecasts of 
monthly averages may be more useful. Examples of 
studies that forecast monthly averages are few. They 
include those of Mundt et al. (1991) and Hathaway et 
al. (1999). Unsmoothed monthly sunspot numbers is 
the variable selected to experiment with in this study. 
Forecasting the numbers is of interest when making 
decisions about satellite orbits and space missions. In 
addition, accurate predictions of them have 
significant economic implications for technologies 
(such as high-frequency radio communications and 
radars) and help in weather forecasting..  
 
Sunspots are huge dark areas (sometimes exceeding 
Earth’s size) that appear on the Sun’s visible surface 
then disappear in a few hours, days, or even months. 
A sunspot number is a daily measure r = A (10 G + 
I), where I is actual number of visible spots on a 
given day observed from twelve centers at different 
locations worldwide, A is an adjustment factor that 
accounts for differences between observatories and 
observers collecting data at the different centers, and 
G is a count of the number of groups of observed 
sunspots on that day.  
The initiative to integrate wavelet-converted data 
with computational techniques to obtain forecasts is 
not entirely new. Given noisy data Yt where Xt is an 
unknown signal, Donoho and Johnstone (1995) 
proposed a thresholding method to reconstruct the 



 

     

unknown signal. Advances in thresholding by 
Donoho (1995), Donoho et al. (1998), and 
Abramovich et al. (1999) followed. The term 
“thresholding” is typically used to describe ways to 
filter signal from noise and obtain smoother 
dynamics that may be easier to estimate. 
Applications using wavelets in estimation were 
reviewed in Lee (1998). More recent applications are 
in Nason and Theofanis (2000), and Cherkassky and 
Shao (2001). Contributions on using wavelets in 
forecasting (rather than only in estimating a function) 
are less ubiquitous and they focus only on one-step-
ahead forecasts. Aussem and Murtagh (1997) apply 
neural networks to ‘à-trous’ wavelet-transformed 
annual sunspot numbers to obtain one-step-ahead 
forecasts for 59 sunspot values (1921 to 1979). Pan 
and Wang (1998) introduced a new estimator that 
combines a state-space model with wavelet 
transforms to forecast S&P 500 as a function of the 
S&P dividend yield. Renaud et al. (2002) 
experimented with AR(4) noisy data to provide one-
step-ahead forecast. 
 
The challenge undertaken in this paper is to obtain 
forecasts of sunspot numbers for a relatively large 
number of periods ahead. Compared with one-step-
ahead forecasts, multi-step-ahead forecasts are more 
useful in planning and decision making. It is 
assumed here that a model that produces accurate 
forecasts for a small number of periods into the 
future, especially if it succeeded in reproducing 
historical values, may be more reliable in producing 
reasonable forecasts further into the future. 
Alternatively, this assumption is the conditional 
probability  
P(Reliable  Fb / acceptable Fa and low historic MSE) 

≥ P(Reliable Fb /  min. historic MSE),          (1) 
where F = forecast, a = T+1, …,T+A, T is the 
number of observations used to obtain a model, A is 
the number of forecast periods for which outcomes 
are known a priori, and b = T+A+1, …, T+A+B, 
where B is the number of forecast periods for which 
outcomes are unknown. Accordingly, Fb = ex ante 
forecast or forecasts of unknown future values, and 
Fa = ex post forecast or forecasts of values whose 
outcomes are already known. Alternatively, the LHS 
of (1) is the conditional probability of obtaining a 
reliable ex ante forecast if a model delivers 
acceptable ex post forecast and relatively low (but 
not necessarily minimum) residuals’ MSE, and its 
RHS is the conditional probability of obtaining a 
reliable ex ante forecast if only residuals of the 
historic fit from a model deliver the lowest MSE. 
Thus, the objective function: 
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is minimized to obtain a forecasting model.  
 
Forecasts using ANN and GP are obtained and 
compared below. The results are different from any 
reported before on forecasting sunspot numbers since 
the lag structures used deliver forecasts for a very 
large number of periods without having to use 
predicted values (or model solutions) as input. 

Before presenting the results, the difference between 
wavelet-transformed and wavelet-denoised data 
conversions is explained in the next Section. GP is 
briefly reviewed in Section 3. Only a short 
introduction of ANN is in Section 4 that mainly 
presents fitting outcomes along with forecast results. 
A few concluding remarks are in Section 5. 
 

2. WAVELETS 
 
In and by itself, wavelet analysis is not a forecasting 
technique. In wavelet analysis, data can be converted 
into forms to which it may be easier to fit models. 
Data conversions can be one of two forms: wavelet 
transforms and denoised series. Conversions can be 
carried out using any of many available wavelets (or 
newly created ones). The Haar and Daubechies 
wavelets are perhaps the most popular and are 
explained by many (e.g. Daubechies, 1992 and 
Gençay et al., 2002).  
 
2.1  Wavelet transforms 
A wavelet transform is a scaling function used to 
transform a signal into father and mother wavelets. 
Father wavelets are representations of a signal’s 
smooth or low-frequency component. Mother 
wavelets are representations of the details or high-
frequency component in a signal. The Haar wavelet 
is the simplest to use. It is a decimated process where 
at each level of scaling half the number of 
observations disappears. When used, it transforms a 
series Yt to obtain mid-point averages (s1) and mid-
point differences (d1) of consecutive pairs of 
observations first. Averages preserve the main signal 
while differences capture the series’ detailed 
fluctuations. In turn, it transforms mid-point averages 
(s1) to obtain their mid-point averages (s2) and their 
mid-point differences (d2), and so on. For discrete 
time series, the values of the mid-point averages and 
differences are known as “coefficients” in the 
literature on wavelets. Obtaining these values is 
known as a discrete wavelet transform process 
(DWT).  Alternatively, DWT maps a vector of Yt 
values to a vector of wavelet coefficients w, or 
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where J is the number of scales or multiresolution 
components, and 

sJ = (sJ,1, sJ,2, …, sJ,T/2
J)′     

dJ = (d J,1, dJ,2, …, dJ,T/2
J)′  

 dJ-1 = (d J,1,1, dJ-1,2, …, dJ-1,T/2
J)′          (4) 

 ...  =  ….     
d1 = (d1,1, d1,2, …, d1,T/2

J)′.    
      

A DWT process of the Haar wavelet has a desirable 
property that may help in forecasting. Given a series’ 
wavelet transformed coefficients sJ and dJ, …, d1 in 
(4) above, original values of that series can be 
reconstructed from the transformed data (Mallat, 
1989). If a series has T = 512, DWT with J = 4 (for 



 

     

example) delivers five series: s4 d4, d3, d2, and d1 
with 32, 32, 64, 128, and 256 coefficients in each, 
respectively. For each of the five data sets (s4, d4, d3, 
d2, and d1), different models can then be obtained. 
The idea of using these five series basically amounts 
to adopting a “divide and conquer strategy”. The 
DWT of the unsmoothed monthly sunspot numbers 
with scaling level J = 4 as well as their IDWT are 
shown in Figure 1.  
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Figure 1. DWT and IDWT of sunspot numbers 
using the Haar wavelet transformation. 

 
The five DWT series are independent inputs to 
model. The model specification assumed for s4 is: 

s4,t = f (s4,t-4, s4,t-5, s4,t-6, s4,t-7).    (5) 
According to (5), s4 is assumed to be a function of 
four distant but consecutive lagged values. Similarly,  

d4,t = f (d4,t-4, …, d4,t-7);    (6) 
d3,t = f (d3,t-8, …, d3,t-15);  (7) 
d2,t = f (d2,t-16, …, d2,t-27);  (8) 
d1,t = f (d1,t-32, …, d1,t-55).  (9) 

Once the five models are obtained, they are used to 
compute fitted values and forecasts of the five series. 

The reconstructed 
^

tY has the same number of 

observations as Yt, except that t in 
^

tY  is shifted 
forward relative to the t in Yt to include forecast 
periods. To obtain fitted and forecasted values, the 
decimation process to use with DWT and its inverse 
must satisfy the condition of perfect reconstruction. 
This means that the number of observations in each 
DWT series must remain the same to produce IDWT 
- the reconstructed series. Accordingly, to reconstruct 
the series, the number of observations T are shifted 
forward by (n+a+b) where b = the desired number of 
observations to forecast ex ante which is set = L. 
More specifically, s4 and d4 that have 32 
observations will be reduced by 4 observations to 
leave 28 for training or fitting models. The resulting 
models will then produce the 28 fitted and 4 forecast 
values. The number of observations used to fit and 
forecast are doubled for d3, then doubled again for 
d2, and so on.  Using this method, equations (5) and 
(6) provide four-step-ahead forecast, equation (7) 
provides eight-step-ahead forecast, equation (8) 
provides 16-step-ahead forecast, and (9) provides 32-
step-ahead forecast. The final forecast delivered by 
the inverse DWT is 64 steps ahead.  

 
2.2  Thresholding 
In thresholding, insignificant values in the DWT 
transformed signal are set equal to zero; then the 
altered series goes through the inverse DWT to 
produce an approximation of the original signal. The 
input series to model and forecast is the IDWT. A 
threshold value is used to distinguish between what is 
significant and what is not. Donoho and Johnstone 
(1995) describe the process and show the optimality 
properties of such wavelet estimator. The steps 
leading to delivering a denoised data set to model are 
in Figure 5, where 

s 4 = δλ4σ4 (s4)   (10) 
d 4 = δλ4σ4 (d4)   (11) 
d 3 = δλ3σ3 (d3)   (12) 
d 2 = δλ2σ2 (d2)   (13) 
d 1 = δλ1σ1 (d1)   (14) 

δλj is a function that shrinks the detailed coefficients, 
λ is a shrinking threshold below which values are set 
equal to zero, and σ = estimate of the scale of noise. 
The shrinkage function is: 

if Y0Y
sign Y Y if Y

| |
( )

( )(| | ) | |λ

≤λ
δ =

−λ >λσ
      (15) 

To complete the thresholding process for the monthly 
data of sunspot numbers, following Bruce and Gao 
(1996, pp. 90-101), λj and σj were used, where λj = 

2 Tlog( )  and σj is a single value to estimate the 
scale of noise obtained from the fine scale coefficient 
d1. The hypothetical model to train or fit is: 

t t 64 t 101Y Y Y
~ ~ ~

( ,..., )− −=   (16) 

where tY
~

is the inverse DWT of the denoised 
coefficients. The number of observations in this 
series is equal to that of the original data (T =512). 
To obtain a forecast, the data is shifted in the manner 
described earlier to deliver 64-step-ahead forecasts.  
 

3. GENETIC PROGRAMMING 
 

GP is a computerized optimisation technique 
employed to solve diverse problems in different 
disciplines. Foundations of GP are in Koza (1992). 
Description of how GP is used in forecasting and its 
statistical properties are in Kaboudan (2001). The GP 
software used in this study is TSGP (Kaboudan, 
2003) written in C++ for Windows environment. It 
takes two types of input files: data files and a 
configuration file. Data input files contain values of 
the dependent and each of the independent variables. 
The configuration file contains execution information 
such as: name of the dependent variable, number of 
observations to fit, number of observations to 
forecast, number of equation specifications to evolve, 
and other GP-specific parameters. Basically, TSGP 
randomly assembles an initial population of 
individual specifications (say 1000), computes their 
fitness, and then breeds new equations as members of 
a new generation with the same population size. An 
individual specification is represented by a tree 



 

     

consisting of nodes connected with arcs. The inner 
nodes contain mathematical operators (such as +, - , 
*, /, sin, cos, etc.). A tree continues to grow until end 
nodes contain explanatory variables or a constant 
term. A node containing a variable or constant is thus 
known as a ‘terminal’. A new population is bred 
using mutation, crossover, and self reproduction. 
Fitter equations in a population get a higher chance 
to participate in breeding. In mutation, TSGP is 
designed to randomly assemble a sub-tree that 
replaces a randomly selected existing part of a tree. 
In crossover, randomly selected parts of two existing 
trees are swapped. In self reproduction, a top 
percentage of the fittest individuals in an existing 
population are passed on to the next generation. The 
idea is to continue generating new populations while 
preserving good genes. After a specified number of 
generations, the program terminates and saves to an 
output file the specification that captures the 
dynamics of a series best. That best equation is then 
used to forecast the series’ future values.  
 
GP is employed to obtain a model for each of the 
series representing sunspot numbers. These include 
the observed data as well as their wavelet-
transformed and wavelet-denoised data. For each of 
those equations are evolved assuming the delayed 
autoregressive specification discussed earlier, or Yt = 
f(Yt-L, Yt-( L+1), …, Yt-( L+c))  where the number of 
periods to forecast L > 1 and can exceed the number 
of explanatory variables, and the number of 
explanatory variables c > 1. Such specification is 
possible when using GP because coefficients in the 
evolved equations are not computed. They are 
random numbers (between -128 and 127) TSGP is 
programmed to generate using a random number 
generator. Given that there are no coefficients to 
compute, there is no restriction on the number of 
lagged dependent variables to include since there are 
no lost degrees of freedom. Such advantage makes it 
possible to set ‘the number of ex post forecast 
periods to evaluate’ = ‘the number of ex ante forecast 
periods desired’. Using the long lag structures (L = 
64) means that MSNt dynamics over the past two to 
six years are assumed to help explain its dynamics 
over the next 64 months. This assumption is similar 
to that made in the precursor model and solar 
dynamo theory of sunspot cycles in Schatten and 
Pesnell (1993).  
 
GP delivers equations that minimize MSE. Because 
assembling the equations is random, the program 
occasionally gets trapped in a local minimum MSE 
rather than a global one within the search space. It is 
therefore necessary to generate a large number of 
equations and then select the best one(s) to use in 
forecasting. Outputs delivered by TSGP are first 
sorted according to lowest historical MSE. Equations 
with the 20 lowest MSE (where the number 20 is 
arbitrarily set) are then sorted in an ascending order 
according to ex post forecast mean absolute percent 
error (MAPE). That equation among the 20 with the 
lowest MAPE is then selected.  
 

4. RESULTS 
 
The variable to model and forecast in this paper is 
MSNt = monthly averages of r at time period t. The 
sample selected for experimentation starts November 
1960 and ends June 2003 with a total of 512 
observations. Using ANN and GP, fitted and 
forecasted values of monthly sunspot numbers were 
obtained for original unsmoothed monthly sunspots 
numbers data, MSN, the inverse of the fitted values 
of the Haar DWT five series (s4, d4, d3, d2, and d1), 
IDWT_H, and the denoised numbers using the 
Daubechies s8 wavelet, Daub_T. Of the 512 
observations available, the first 63 were lost to 
provide the lengthy lag. An additional 48 more 
degrees of freedom were lost as lagged-dependent 
variables. The last 64 observations (March 1998 
through June 2003) were reserved to evaluate the ex 
post forecasts. This left 337 observations ( = 512 – 
63 – 48 – 64) starting February 1970 through 
February 1998 for model training and fitting. It was 
then possible to forecast 64 more periods ex ante 
starting July 2003 through October 2008. 
 
4.1 ANN & its Results  
ANN is an information-processing paradigm based 
on the way densely interconnected parallel structure 
of human brains process information. The technique 
can detect structure in time-series. A network is a 
collection of mathematical models that emulates the 
nervous systems and draws on the analogies of 
adaptive learning. Input data is presented to the 
network that learns to predict future outcomes. 
Principe et al. (2000) among many others provide a 
complete description of types of networks to choose 
from and how ANN can be used in forecasting.  
NeuroSolutions is the software used here in training 
the networks and forecasting sunspot numbers. After 
experimenting with different network configurations, 
two types – multilayer perceptions (MLP) and 
generalized feedforward (GFF) – were selected to  
model and forecast sunspot numbers.  
 
Statistics on ANN’s training results are summarized 
in Table 1. These statistics are reported to help 
determine normality of training residuals, and to 
evaluate quality of fitting the historic data. In the first 
row, residuals’ means are reported followed by their 
standard errors and t-statistic. These are followed by 
measures of kurtosis and skewness. Training 
residuals are assumed normal if (i) the t-test suggests 
failing to reject the null that a mean error is 
statistically equal to zero, (ii) the coefficient of 
kurtosis is approximately equal to zero, and (iii) the 
coefficient of skewness is approximately equal to 
zero. The results suggest that although the mean 
MSN residuals is not significantly different from zero 
and the coefficient of skewness suggests slight right 
skewness, the residuals are leptokurtic. Residuals 
from the IDWT_H have a mean that is not 
statistically different from zero but are also 
leptokurtic.  Residuals from the S4 data may not have 
a mean of zero but are slightly platykurtic. Residuals 
from the Daub_T data may be statistically equal to 



 

     

zero but are also leptokurtic. The second set of 
statistics in Table 1 provides a comparison of the 
statistics measuring fitness of each network’s 
simulated data. Low MSE and high R2 are indicators 
of reasonable fitness. The lowest MSE = 53.55 and 
highest R2 = 0.98. Both belong to the Daub_T data.  
 

Table 1. ANN training results  
  MSN Haar Daub_T
Mean Error 0.19 -4.54 0.45 
Standard Error 0.72 1.24 0.39 
t-test (Ho: mean = 0) 0.26 -3.66 1.14 
Kurtosis 1.27 1.75 0.97 
Skewness 0.29 -0.67 -0.25 
MSE  174.00 537.71 52.55 

R2 0.94 0.82 0.98 
 
4.2  GP Results 
The parameters used in TSGP to evolve GP 
equations were: population size = 1200, number of 
generations = 120, mutation rate = 60%, crossover 
rate = 20%, cross self rate = 10%, and number of 
best-fit equations to evolve = 100. The statistics on 
fitted values of the GP-evolved models equations are 
in Table 2. They suggest that the MSN residuals have 
a mean that is significantly different from zero, the 
coefficient of kurtosis shows slight peakedness, and 
the coefficient of skewness suggests slight right 
skewness. These residuals are close to being 
normally distributed.  Residuals from the IDWT_H 
have a mean that is statistically different from zero 
although they have no skewness or kurtosity.  The S4 
residuals are close to being normally distributed. The 
Daub_T residuals are also close to being normally 
distributed. The lowest MSE = 225 and highest R2 = 
0.92 belong to the denoised Haar data.  
 

Table 2. GP fitting results   
 MSN Haar Daub_T 

Mean -0.27 2.52 1.14 
Standard Error 1.71 0.81 1.01 
t-test -0.16 3.12 1.13 
Standard Deviation 31.41 14.81 18.54 
Kurtosis 0.30 0.02 0.05 
Skewness 0.43 0.15 0.22 
MSE 983.92 224.97 343.83 

R2 0.66 0.92 0.87 
 
4.3  The Forecasts 
Although ANN delivered the better fit when 
reproducing data used in training, GP delivers the 
better forecasts. Table 3 contains a comparison of 
two forecast statistics: Theil’s U-statistic and the 
forecast MSE. Theil’s U-statistic (a measure of 
forecast performance) is 

2A A ^1 1
aa 1 a 1

2
aY

MSEU
A Y A− −

= =
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=

+

  (17) 

where a = 1, 2, …, A (with A = number of 

observations forecasted ex post),  and 
^

aY are forecast 
values of aY . This statistic will always fall between 
zero and one where zero indicates a perfect fit 
(Pindyck and Rubinfeld, 1998, p. 387). Among all 
ANN and GP results, GP delivered the lowest U-
statistic and ex post MSE of forecasts using the Haar 
transformations.  
 

Table 3. ANN & GP forecast results 
 MSN Haar Daub_T 

ANN:       
Theil's U 0.26 0.30 0.23 
MSE 1823.42 2530.85 1329.82 
GP:    
Theil's U 0.22 0.16 0.24 
MSE 1317.25 584.12 1686.73 

 

Figure 2a. Actual vs. ANN-fitted and 
forecasted Daub_T data.
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Figure b. Actual vs. GP-fitted and forecasted Haar.
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 Figure 2a-b through 10a-b furnish comparisons 
between the values of the different series (i.e., the 
observed unsmoothed monthly sunspot numbers and 
their wavelet-converted values) and each of the four 
fits and forecasts. Figures 7a, 8a, 9a, and 10a are 
outputs delivered by ANN. Figures 7b, 8b, 9b, and 
10b are outputs delivered by GP. The figures suggest 
conclusions consistent with those Tables 3-5 
suggested. All fits and forecasts seem to have 
captured the cycles of sunspot numbers. GP forecasts 
captured the beginning of a new cycle sometime 
around 2006 or 2007, which seems more logical. 
Although neither forecast is perfect, they actually 
exceeded expectations formulated before conducting 
this experiment.  

 
 
 



 

     

5. CONCLUSION 
 

The objective of this paper was to investigate 
whether it is possible to produce reasonable forecasts 
for many periods into the future when wavelet-
converted data is fitted and forecasted using 
computational techniques. Monthly sunspot numbers 
were targeted to fit and forecast using three different 
configurations. In addition to the observed series, 
wavelet-converted series were used. They are less 
noisy and expectations were that they should produce 
better models and hopefully better forecasts than 
would the observed series. Artificial neural networks 
and genetic programming were used to train data or 
fit models then to forecast. These techniques were 
selected because when using them it is possible to 
use a relatively large number of lags and therefore 
obtain forecasts long into the future without relying 
on any forecast values as input. Comparative results 
suggested that the model that delivered historical 
best-fits was not the one that delivered the best short- 
or long-term forecasts. The model that delivered the 
best short-term forecasts also delivered the best 
longer-term forecasts. The series that produced the 
best forecast was the Haar transformed data using 
GP.  
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