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Abstract: A control method without state feedback of the free link is proposed for
swing-up and stabilization at the upright position of a flexible free link in a two-
link underactuated flexible manipulator (the active first and free second links are
rigid and flexible, respectively). The proposed method is based on the actuation
of bifurcations produced in the second link under high-frequency excitation of the
first link. Experimental results show the validity of the proposed method of control
for the flexible underactuated manipulator.Copyright c©2005 IFAC.
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1. INTRODUCTION

High-frequency periodic excitation realizes the
stabilization of the unstable equilibrium states
without feedback control (Kapitza, 1965) (Meerkov,
1980); this has been recognized in many fields for
a considerably long time. In contrast with this
phenomenon, high-frequency excitation can also
destabilize stable equilibrium states (Schmitt and
Bayly, 1998). These stabilization and destabiliza-
tion phenomena under high-frequency excitation
are produced through subcritical and supercritical
pitchfork bifurcations, respectively.

In the previous study (Yabuno et al., 2004), by
utilizing the above pitchfork bifurcations under
high-frequency excitation, a method of motion
control for a two-link rigid underactuated manipu-
lator, whose first link is connected to the first joint
with only the actuator, without state feedback of
the free link, is theoretically and experimentally
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proposed. In this study, we consider the method
of control for an underactuated two-link manip-
ulator with a flexible free link. The study of the
flexible manipulator was first performed by Book
et al. (Book et al., 1975) and expanded by many
researchers. However, for the ‘flexible underactu-
ated’ manipulator, there are few reported control
methods without feedback of the free link to our
knowledge. There are, of course, many studies
on ‘rigid underactuated’ manipulators, and com-
prehensive references can be found in (Arai et
al., 1998). In this study, similar to the previous
control method for the rigid underactuated ma-
nipulator, the actuation of the bifurcations pro-
duced under high-frequency excitation for the ac-
tive rigid first link is utilized for swinging the free
link up to the upright position and stabilization in
this state. Also, it is theoretically shown that the
control method enables the above objectives to
be accomplished independent of the elastic mode
of the flexible free link, by setting the excitation
frequency of the first link far from the natural fre-
quencies of the elastic modes of the free link. Fur-
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Fig. 1. Analytical model of flexible underactuated
manipulator (the first link is a rigid body and
the second link is an elastic body)

thermore, through experiments performed with an
underactuated flexible manipulator, the effective-
ness of the theoretically proposed control method
is confirmed.

2. EQUATION OF MOTION OF FLEXIBLE
UNDERACTUATED MANIPULATOR

The analytical model of a flexible underactuated
manipulator is shown in Fig.1. The manipulator
can be moved on the vertical plane. The active
(first) joint has an actuator which can provide
torque τ for the active (first) link. On the other
hand, the flexible free (second) link cannot be
controlled directly because the free (second) joint
lacks not only an actuator but also a sensor. Un-
der such conditions of the second joint, we can-
not utilize state feedback, unlike in conventional
studies on underactuated manipulators. There-
fore, similar to the control method for the rigid
free link proposed in the previous study (Yabuno
et al., 2004), we perform motion control of the
flexible free link by using high-frequency excita-
tion at the active joint. Hence, we set the angle of
the first link as (it is easily realized in experiment
by using commercial base position controller):

θ1 = aθ1 cosωt + θ1off , (1)

where the first term is a measure of the high-
frequency excitation (hereafter, aθ1 and ω are
called the excitation amplitude and the excitation
frequency, respectively). The second term θ1off

expresses the configuration of the first link with
respect to the direction of gravity (hereafter, θ1off

is called “offset of excitation”).

We introduce the axis r expressing the rigid mode
of the flexible free link so as to satisfy

l2∫
0

r
∂2w

∂t2
wdr = 0, (2)

where w is the elastic mode and l2 is the length
of the free link in the static equilibrium state.
Also, assuming that the second link behaves like
a Euler-Bernoulli beam, the x and y components
of the absolute position of the second link at
r = r1 can be approximately expressed, under
small elastic deflection w, as

x = l1 cos θ1 + r1 cos θ2abs − w(r1, t) sin θ2abs

y = l1 sin θ1 + r1 sin θ2abs + w(r1, t) cos θ2abs,(3)

where θ2abs is the absolute angle of the rigid body
mode of the free link expressed as:

θ2abs = θ1 + θ2. (4)

Then, the kinetic energy T and the potential
energy U can be shown as

T =
1
2
(J + m1l

2
1g)

(
dθ1

dt

)2

+
ρ

2

l2∫
0

{
l21

(
dθ1

dt

)2

+
(

∂w

∂t

)2

+ (r2 + ω2)
(

dθ2abs

dt

)2

+ 2r
∂w

∂t

dθ2abs

dt

+ 2l1
dθ1

dt

dθ2abs

dt
(r cos θ2 − w sin θ2)

}
dr (5)

U =−m1gl1g cos θ1 − ρg

l2∫
0

{l1 cos θ1

+ r cos θ2abs − w sin θ2abs} dr

+
EI

2

l2∫
0

(
∂2w

∂r2

)2

dr, (6)

where m1, l1, l1g, J , ρ, l2, E, and I are the mass,
length of the first link, the distance between the
first joint and the center of gravity of the first
link, the mass moment of inertia about the center
of the first link, the linear density, the length of
the second link, Young’s modulus of elasticity,
and the cross-sectional area moment. The val-
ues corresponding to the subsequent experimental
apparatus are as follows: m1 = 0.0856kg, l1 =
0.12m, l1g = 0.051m, J = 3.9 × 10−4kg · m2, ρ =
4.3×10−2kg/m, l2 = 0.174m, E = 12×1010Ps, I =
10.42×10−13. The equations governing the behav-
iors of θ1, θ2, and w are obtained using Hamilton’s
principle. In the dimensionless form, the governing
equations of the angle of the rigid-body mode and
elastic modes of the second link, θ2 and w∗ =
w/l2, are expressed as

θ̈2bas + c1θ̇
2
1 sin θ2 + c1θ̈1 cos θ2 + σ sin θ2abs

+

1∫
0

{6ẇ∗w∗θ̇2abs + 3w∗2θ̈2abs



−2c1ẇ
∗θ̇1 sin θ2 − 2c1wθ̈1 sin θ2

+2c1w
∗θ̇2

1 cos θ2 + 2σw∗ cos θ2abs}dr

+µθ2θ̇2 = 0 (7)

ẅ∗ + c2w
∗′′′′ − w∗θ̇2

2abs + r∗θ̈2abs

+
2
3
c1θ̇1θ̇2abs sin θ2 +

2
3
σ sin θ2abs + µwẇ∗ = 0,

(8)

where (̇) and (′) denote the partial derivatives
with respect to dimensionless time t∗ = ωt
and dimensionless coordinate r∗ = r/l2, respec-
tively, and the dimensionless parameters, c1, c2,
and σ are expressed as c1 = 3l1/(2l2), c2 =
EI/(ρl42ω

2), σ = 3g/(2l2ω
2).

In the above equations, viscous damping effects,
µθ2θ̇2 and µwẇ∗ are also considered. The asso-
ciated boundary conditions corresponds to those
of the beam with hinged and free supported
boundary conditions and are expressed as follows:
w∗|r∗=0 = w∗′′|r∗=0 = w∗′′|r∗=1 = w∗′′′|r∗=1 = 0.
Also, Eq. (1) is rewritten in the dimensionless
form as

θ1 = aθ1 cos t∗ + θ1off (9)

Hereafter the asterisk is omitted.

3. THEORETICAL ANALYSIS

3.1 Modal expansion

First, we expand the elastic mode of the second
link w by using the linear normal modes in

ẅ + c2w
′′′′ = 0, (10)

which corresponds to the equation obtained by
neglecting the damping and nonlinear terms in
Eq. (8). Using the before mentioned boundary
conditions, w can be expanded with linear normal
modes as follows:

w(r, t) =
∞∑

n=1

qn(t) · ϕn(r). (11)

We substitute this equation into Eqs. (7) and (8),
and account only for the first mode of w:

w(r, t) ≈ q1(t) · ϕ1(r), (12)

where ϕ1(r) is the first eigenmode, which is shown
by using the first eigenvalue λ1 as

ϕ1(r) = sin λ1l2 · sinh λ1r + sinh λ1l2 · sinλ1r.

Then, the equations governing the dynamics of
θ2 and q1 are written as

(1 + 3α1q
2
1)θ̈2 + (µθ2 + 6α1q̇1q1)θ̇2

+(1 + c1 cos θ2 + 3α1q
2
1 − 2c1α2q1 sin θ2)θ̈1

+c1(sin θ2 + 2α2q1 cos θ2)θ̇2
1 + σ sin θ2abs

+(6α1q1 − 2α2c1 sin θ2)q̇1θ̇1

+2σα2q1 cos θ2abs = 0 (13)

q̈1 + µw q̇1 + (ω2
w1 − θ̇2

2abs)q1 − θ̇2
2absq1 + β1θ̈2abs

+β2θ̇1θ̇2abs sin θ2 + β3σ sin θ2abs = 0, (14)

where αn(n = 1, 2), ωw1, and βn(n = 1, 2, 3)
are dimensionless constant parameters which are
governed by λ1, ϕ1, and l2, respectively.

3.2 Bifurcation equation

In this section, by using the method of multiple
scales (Nayfeh, 1973), we perform the averaging of
Eqs. (13) and (14) in order to clarify the nonlinear
characteristics of the bifurcation produced in the
free link and to examine the dynamics of the
elastic first mode of the free link. Before applying
the analytical method, we perform the scaling of
some parameters according to c2 = ε2ĉ2, σ =
ε2σ̂, µθ2 = εµ̂θ2, µw = εµ̂w, and aθ1 = εâθ1, whereˆ
denotes “of the order O(1)” and ε is a bookkeeping
device. Then, using three time scales, we seek an
approximate solution in the form

θ2 = θ20(t0, t1, t2) + εθ21(t0, t1, t2)

+ ε2θ22(t0, t1, t2) + · · · (15)

q1 = εq11(t0, t1) + ε2q12(t0, t1) + · · · . (16)

Substituting Eqs. (15) and (16) into Eqs. (13) and
(14), considering Eqs. (4) and (9), and equating
the coefficients of like powers of ε yield the follow-
ing equations for the orders:

O(ε0) :

D2
0θ20 = 0 (17)

O(ε) :

D2
0θ21 = âθ1(1 + c1 cos θ20) cos t0 (18)

D2
0q11 +

{
ω2

w1q11 − (D0θ20)2
}

q11 = β1D
2
0θ21

−2β1D0D1θ20 − β1âθ1(1 + c1 cos θ20) cos t0

+β2âθ1D0θ20 sin t0 sin θ20 (19)

O(ε2) :

D2
0θ22 = −D2

1θ20 − µ̂θ2D1θ20

− â2
θ1c

2
1

2
(1 + cos 2t0) sin θ20 cos θ20

−âθ1c1θ21 cos t0 sin θ20

−σ̂ sin(θ1off + θ20) + · · · (20)

D2
0q12 +

{
ω2

w1 − (D0θ20)2
}

q12 = −2D0D1q11

−µ̂wD0q11 + . . . (21)

Here, Di = ∂/∂ti. First, from Eq. (17), we obtain
the general solution of θ20 as



θ20 = C1t0 + C0(t1, t2). (22)

We set the integral constant of C1 to zero to elim-
inate the secular term in Eq. (22). Considering
that θ20 is not a function of t0, we obtain

D2
0θ21 = âθ1(1 + c1 cos θ20) cos t0 (23)

D2
0q11 + ω2

w1q11 = β1âθ1(1 − c1 cos θ20) cos t0.

(24)

The particular solution of Eq. (23) and the general
solution of Eq. (24) become

θ21 = −âθ1(1 + c1 cos θ20) cos t0 (25)

q11 = aw1(t1) cos {ωw1t0 − γw1(t1)}
−β1âθ1c1 cos θ20

ω2
w1 − 1

cos t0. (26)

Furthermore, substituting Eqs. (25) and (26) into
Eqs. (20) and (21) and considering that θ20 is not
a function of t0, the conditions for the elimination
of secular terms from θ22 and q12 are expressed as

D2
1θ20 + µ̂θ2D1θ20 − â2

θ1c
2
1

2
sin θ20 cos θ20

+σ̂ sin(θ20 + θ1off ) = 0 (27)

D1aw1 = − µ̂w1

2
aw1, D1γw1 = 0. (28)

From Eq. (28), the amplitude of the homogenous
solution in the first elastic mode of the free link
aw1 decays as follow:

aw1 = aw10e−µ̂w1t1/2 = aw10e−µw1t/2, (29)

where aw10 is a constant determined from the
initial condition. If the excitation frequency of the
first link (the dimensionless excitation frequency
is 1) is not in the neighborhood of the first natural
frequency of the elastic mode of the free link ωw1,
the amplitude of the oscillation of the elastic mode
does not increase and remains in the order of
O(ε). Similarly, for any other higher modes, it can
be theoretically predicted that the magnitudes do
not increase with time. Therefore, we can neglect
the elastic mode and focus on the rigid body mode
θ2 for the proposition of motion control of the free
link.

Multiplying both sides of Eq. (27) by ε2 yields the
approximate equation governing the dynamics of
the rigid-body mode of the free link, as follows:

θ̈20 + µθ2θ̇20 − a2
θ1c

2
1

2
sin θ20 cos θ20

+σ sin(θ20 + θ1off ) = 0. (30)

Because this equation is autonomous, neglecting
θ̈20 and θ̇20 leads to a bifurcation equation similar
to that in the case when the free link is rigid
(Yabuno et al., 2004).

0

π/2

-π/2

θ
2

[r
ad

]

σ

0
σexam

0

π/2

θ1off [rad]

aθ1 c1/2
2 2

π/4

aθ1 c1/4
2 2

(B)

(C)
(D))

Lower stable surface

Upper stable surfacep

Fig. 2. Equilibrium surface (the combinations of
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on the equilibrium surface show stable con-
figurations of the manipulator)

4. BIFURCATION PHENOMENA
PRODUCED IN THE FREE LINK

By changing θ1off (the direction of the gravity
effect) and σ (proportional to 1/ω2), the equilib-
rium points are varied continuously. Let us set the
excitation frequency of the first joint to values
that are not in the neighborhood of the natural
frequency of the first elastic mode. Then, similar
to that in the previous paper, it is shown that
under sufficiently constant high-frequency excita-
tions, i.e., σ < a2

θ1c
2
1/4 and the change of the

offset of excitation θ1off from 0 to π/2 swing-
up and stabilization at the upright position are
accomplished without state feedback of the free
joint.

By obtaining equilibrium points and examining
their stabilities by using Eq. (30), we can show the
regions in the equilibrium surface which consist of
the stable equilibrium points as hatched surfaces
in Fig. 2; hereafter we call these hatched surfaces
stable equilibrium surfaces or stable surfaces for
short. The points on the surface, such as (B),
(C), and (D), are discussed in the next section.
This figure shows the sets of all stable equilibrium
points produced through the pitchfork bifurca-
tions under high-frequency excitation, i.e., small
σ, and through their perturbations under the
change in the offset of excitation, i.e., actuation of
θ1off . The cross sections of the stable equilibrium
surface in Fig. 2 and the planes θ1off = 0, θ1off =
π/4, and θ1off = π/2 correspond to the stable
equilibrium branches in the bifurcation diagrams
of Figs. 3, 4, and 5, which are obtained from Eq.
(30) under the conditions θ1off = 0, θ1off = π/4,
and θ1off = π/2, respectively. The left and right
ordinates are the relative and absolute angles of
the free link, respectively.
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In the case of θ1off = 0, a supercritical pitchfork
bifurcation is produced at σ = a2

θ1c
2
1/2, as shown

in Fig. 3. In the case of σ < a2
θ1c

2
1/2, i.e., when the

excitation frequency is sufficiently high, the equi-
librium state θ2 = 0, where the second link hangs
down in the direction of gravity, is changed to be
unstable and simultaneously, the nontrivial stable
equilibrium state is produced. Then, the second
link is swung up from the direction of gravity.
When we increase the offset of excitation, various
perturbations of the bifurcation are produced. For
example, in the case of θ1off = π/4, the supercrit-
ical pitchfork bifurcation is perturbed (the com-
bination of the lower three equilibrium states), as
in Fig. 4, and the combination of the upper three
equilibrium states is also regarded as a perturbed
subcritical pitchfork bifurcation. Furthermore, we
increase the offset of excitation, and when θ1off

is π/2, a subcritical pitchfork bifurcation is pro-
duced at σ = a2

θ1c
2
1/2, as shown in Fig. 5. In

the case of σ < a2
θ1c

2
1/2, i.e., when the excitation

frequency is sufficiently high, the equilibrium state
θ2 = π/2 (θ1off + θ2 = π), where the second link
is in the upright position, is stable.
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5. MOTION CONTROL WITHOUT STATE
FEEDBACK

5.1 Control strategy by actuating the bifurcations

From the above results, it is seen that the change
of the offset of excitation θ1off realizes the ac-
tuation of the bifurcations, i.e., many types of
bifurcation phenomena can be produced. By con-
tinuously changing the offset of excitation, it is
possible to move the stable equilibrium states of
the free link. Now, let us consider the swing-
up of the free link and the stabilization at the
upright position. For example, we set the exci-
tation frequency to ωexam, i.e., the parameter σ
to σexam = 3g/(2l2ω

2
exam) (see Fig. 2). Because

the initial offset of the excitation is θ1off = 0,
the state of the free link can be located at (B)
on the equilibrium surface in Fig. 2 under the
excitation frequency. Then, by changing the offset
of excitation θ1off , the stable equilibrium state
is moved from point (B) to (D) on the equilib-
rium surface and swing-up is accomplished. These
points correspond to those in Figs. 3, 4, and 5,
respectively. Furthermore, it is noted from the
bifurcation diagram of Fig. 5 that the upright
position, i.e., point (D), is stable.
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Fig. 7. Experiment of underactuated manipulator (swing-up of the flexible free link and stabilization at
the upright position)

When we increase the excitation frequency ω from
0 to ωexam, i.e., decrease σ from +∞ to σexam,
at the first stage of control (θ1off = 0), the
probability that the free link can be put on the
upper or lower branch in the bifurcation diagram,
Fig. 3, i.e., on the upper stable surface or the lower
stable one in Fig. 2, is 50% because the bifurcation
is completely supercritical, as indicated by the
arrow in Fig. 3. To definitely put the state on
upper surface, we set θ1off to be negative (for
example, θ1off = −π/4). Then the bifurcation
diagram is expressed as in Fig. 6. In this case,
the state of the free link moves along the arrows
in Fig. 6 with increasing excitation frequency
and can definitely be put on the upper branch.
After that, by changing θ1off to π/2 continuously,
swing-up is accomplished following the arrows in
Fig. 2 ((A) → (B) → (C) → (D)).

5.2 Experiment

We experimentally confirm the validity of the
theoretically proposed control method. The active
(first) link is actuated by an AC servomotor with
a rotary encoder (Mitsubishi Corp., HC-MFS73
(maximum torque: 7.2 Nm, rated output: 750
W)). The flexible free (second) link does not have
an actuator or a sensor. A CCD camera (Sony
Corp., XC-77) is used for recording the behavior
of the manipulator under motion control; this
data is not used in motion control. We show an
experimental result of swing-up of the flexible free
link indicated by changing the offset of excitation
of the active link. Fig. 7 (a) shows the static
equilibrium position (aθ1 = ω = θ1off = 0). The
configurations of the manipulator, (B), (C), and
(D) in Figs. 7 (c), (d), and (e), correspond to
the points (B), (C), and (D) in Figs. 3, 4, and
5, respectively. Here, the excitation frequency of
the active link is constant at 45 Hz in motion
control from Figs. 7 (b) to (e). Swing-up of the
free link is accomplished without state feedback of
the free link when the offset of excitation reaches
θ1off = π/2. Also, the upright position of the free
link is stable without state feedback of the free
link.

6. CONCLUSION

In this study, a method of motion control without
state feedback of the flexible free link is proposed
for a two-link flexible underactuated manipulator,
in which the first (active) link is rigid and the
second (free) link is flexible, wherein the pitchfork
bifurcation is induced under the high-frequency
excitation and the perturbation of the bifurcation
is actuated. The control method can be regarded
as that of manipulators in the case when not only
the actuator but also the sensor breaks down.
Experimental results for an underactuated flexible
manipulator confirm the validity of the proposed
motion control method.
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