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Abstract: Discretely controlled switched positive systems are characterized by inter-
acting continuous and discrete dynamics. Switching must take place not only to move
the continuous state from the initial state to a goal state, but also to make the system
remain in the surroundings of the goal state. The continuous dynamics are positive.
This paper shows that if the continuous positive systems making up the switched
system have a certain structure, it is possible to design stabilizing state-feedback
controllers which ensure that the trajectories of the switched system cannot diverge
to infinity regardless of the way the switching thresholds are selected. The trajectories
of the discretely controlled switched positive systems can be restricted to invariant sets
(called H-invariant sets) away from the equilibrium points of the continuous system
parts. For a planar system, the trajectories within an H-invariant set converge to
a stable and unique limit cycle regardless of the initial state. It is shown how this
idea can be applied to design controllers which restrict the steady-state values of the
continuous states to desired sets. Experimental results concern a manufacturing cell
with hybrid dynamics. Copyright c©2005 IFAC
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1. INTRODUCTION

Linear switched systems are dynamical systems
where a number of continuous linear systems
are switched in a systematic manner in order
to achieve an overall control aim. These kind of
systems arise in many practical situations where a
control objective can only be satisfied if the opera-
tion mode of a continuous system is switched in an
appropriate manner. In DC-DC converters (cf. e.g.

1 Partially supported by the DAAD

(Krupar and Schwarz 2003)) switching must take
place indefinitely in order to maintain the output
voltage within a given range. Other examples can
be found in the process industry where heated
parts are used to transfer heat energy to other
parts or fluids in order to maintain them within a
given temperature range (cf. Section 6).

In the controller design for switched systems,
the interaction between continuous-variable and
discrete-variable dynamics has to be considered,
and the design procedure results in a hybrid con-



troller which has a continuous part and a discrete
part. A general method for simultaneously de-
signing the discrete and the continuous parts of
the controller has been proposed in (Branicki et
al. 1998) based on the framework of a controlled
general hybrid dynamical model. In this approach,
a cost function is defined and the continuous and
discrete control signals which minimize the cost
function over a given time horizon are computed.
A similar optimization approach has been pro-
posed in (Bemporad and Morari 1999) with the
hybrid system modelled as a mixed logical dynam-
ical system. Another general method of designing
controllers for switched systems has been reported
in (Asarin et al. 2000). All these methods result
in an open-loop control which has the known dis-
advantages of missing robustness with respect to
model uncertainties and disturbances.

This paper shows how for a specific class of
switched systems a closed-loop controller can be
found (Fig. 1). It concerns switched systems that
have a positive dynamics in all operation modes.
The controller has to switch the operation mode
in order so satisfy the given control aim. This
controller reacts on events that are generated by
the continuous-variable system if the state crosses
a partition border in the state space. The inter-
esting aspect of these systems is that the partition
borders can be freely chosen when designing the
controller. Hence, the design problem considered
here includes the definition of the state partition
that characterises the hybrid closed-loop system.
The positivity property of the continuous system
makes it possible to analyse the behaviour of the
closed-loop system in such a general way that
guidelines for this choice of the controller can be
obtained.

The paper is organized as follows: After the model
of the discretely controlled switched system has
been presented in Section 2 Section 3 is devoted
to the analysis of the vector fields of the switched
system. It is shown that the switched system can-
not escape from the non-negative part of the state-
space, and the trajectories of the switched system
cannot diverge to infinity. The steady-state anal-
ysis in Section 4 shows that the trajectories of the
discretely controlled switched positive system can
be restricted to invariant sets away from the equi-
librium points of the constituent systems making
up the switched system. These invariant sets are
called H-invariant sets. For planar systems, the
trajectories within a H-invariant set converge to
a stable and unique limit cycle regardless of the
initial state. In Section 5 this idea is applied to
design controllers which restrict the steady-state
values of the continuous states to desired sets
regardless of the initial state. A practical example
is given in Section 6.

Due to space limitations, the propositions in this
paper are stated without proofs which can be
found in (Kamau 2004). The paper deals with the
two-dimensional case, whereas generalisations can
be found in (Kamau 2004).

2. THE MODEL
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Fig. 1. The model of the closed-loop system

Figure 1 shows the closed-loop system consisting
of the plant and the controller. The symbols used
in the figure are defined as follows:

• x = [x1 x2 . . . xn]T ∈ X ⊆ R
n is the

continuous state vector.
• q ∈ Q ⊆ N

M is the discrete state prescribed
by the discrete part of the controller.

• uq ∈ U ⊆ R is the continuous control signal.
• e = {e1, e2, . . . , eM}, with eq ∈ {0, 1} is

a vector of discrete events. The event eq

is generated when the continuous state x

crosses the threshold Φq(x) in the continuous
state space, i.e.

eq =

{

0 if Φq(x) ≤ 0
1 otherwise

. (1)

• rq ∈ R is a reference input for the continuous
controller.

There is a unique continuous map f̃ (q) (·) asso-
ciated with each discrete state q, and the con-
tinuous dynamics which are active at any given
time are determined by the discrete controller.
There is a separate continuous controller kCq

for
each discrete state, i.e. the continuous controller
is switched together with the continuous plant.

In this paper, the following modelling assump-

tions are made:

• The continuous state x does not jump at the
switching instants.



• The continuous systems f̃ (q)(·), q = 1, . . . ,M
are positive linear systems of the form

ẋ = Ã(q)x + b̃(q)uq. (2)

• The continuous controllers preserve the posi-
tivity of the associated continuous dynamics.

• The continuous systems are observable.
• None of the continuous systems f̃ (q)(·), q =

1, . . . ,M is completely state controllable by
virtue of some inputs not being directly or
indirectly connected to the states. This as-
sumption is made to exclude the trivial so-
lution where the switched system can be
transferred from the initial state to the goal
state without switching. It is assumed that
the poles corresponding to the uncontrollable
states lie strictly on the left-half plane.

• The switching surfaces Φq(x) are linear func-
tions of the form cT

q x−dq = 0, q = 1, . . . ,M .

Specific continuous models. In the analysis de-
scribed in the next section, it is assumed that two
positive continuous-time systems making up the
switched system. Each has only one controllable
state, but the combination of the controllable
states for both the continuous systems covers the
whole state space. In a 2-dimensional setting, the
continuous systems are given by
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where the matrices or vectors occurring in both
equations are denoted by Ã(1) and Ã(2) or b̃(1)

and b̃(2), respectively.

3. ANALYSIS OF THE VECTOR FIELDS

Affine state feedback is used to stabilize the con-
tinuous systems while maintaining the positivity
of the continuous dynamics, (for details cf. (Ka-
mau 2004)). After the design of the continuous
controller, the continuous dynamics of the asymp-
totically stable closed-loop systems corresponding
to systems (3) and (4) are given by
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ẋ1

ẋ2
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and
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(6)

The continuous controllers are designed in such a
way that the inequalities

−a
(q)
ii >

n
∑

j=1

j 6=i

a
(q)
ij for i = 1, . . . , n, q = 1, . . . , n

(7)
hold. Switching between systems (5) and (6)
means superimposing the vector fields of the re-
spective systems. If the continuous systems satisfy
condition (7), the vector fields of the switched
system have the properties shown in Figure 2. Line

l1 is defined by the equation a
(1)
11 + a

(1)
12 + b

(1)
1 = 0

while line l2 is given by a
(2)
21 + a

(2)
22 + b

(2)
2 = 0. The

point [x̄1, 0]T is the equilibrium point of system
(5) while point [0, x̄2]

T is the equilibrium point
of system (6). The arrows show the directions of
the vector fields.

The figure shows that the continuous state space
R

2
≥0 can be partitioned into 4 different regions

depending on the direction of the vector fields.
As a consequence, the following propositions can
be proved (Kamau 2004):
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ẋ2 > 0 ẋ2 > 0

ẋ2 < 0
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Fig. 2. Vector fields of systems (5) and (6) super-
imposed

Proposition 3.1. The non-negative part of the
state-space (the set R

n
≥0) is an invariant set for the

discretely controlled switched positive systems.

Proposition 3.2. The state of the discretely con-
trolled switched positive system made up of the
second-order asymptotically stable positive sys-
tems (5) and (6) is bounded, i.e.

‖x(0)‖ < ∞ ⇒ ‖x(t)‖ < ∞ ∀t ≥ 0 (8)

This concept of the boundedness of the state
can be extended to higher dimensional systems
provided the continuous controllers are designed
such that each system satisfies condition (7).



4. H-INVARIANT SETS

It is well known for a linear system

ẋ = Ax, x(0) = x0, (9)

that a set X̃ ⊆ R
n is said to be A-invariant if

Ax ∈ X̃ for all x ∈ X̃. Every trajectory of system
(9) starting from the A-invariant set X̃ remains
in that set for all future time.

As an analogy, the notion of an H-invariant set
(H for hybrid) is introduced here as follows:

Definition 4.1. A set H ⊆ R
n
≥0 is called H-

invariant if all the trajectories of the discretely
controlled switched positive system starting from
H remain in that set for all future time.

In the previous section, it was stated that the
trajectories of the discretely controlled switched
positive system cannot escape from the set R

2
≥0,

which is the entire continuous state space for this
type of system.

Corollary 4.1. The set R
2
≥0 is the largest H-

invariant set for the discretely controlled switched
positive system.

To illustrate the properties of the H-invariant set,
consider Figure 3. The switching thresholds Φ1

and Φ2 are straight lines originating along the x1

axis in region R1 and extending into region R3.
The switching surfaces do not intersect and do not
enclose the equilibrium points [x̄1, 0]T or [0, x̄2]

T

between them. The setting in the figure assumes
that the switched system has an initial state along
the switching threshold Φ2 with system (5) active.
When the system trajectory crosses the switching
threshold Φ1, system (6) becomes active, and
when the trajectory crosses threshold Φ2, system
(5) becomes active, and so on.
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Fig. 3. H-invariant set H1

The trajectory of the switched system starting at
point xt0a

along the x1-axis in Figure 3 evolves
as shown in the figure, and after one cycle, the
trajectory of the switched system ends up at a
point xt2a

which is higher than xt0a
. On the other

hand, a trajectory of the switched system starting
at point xt0b

in region R3 evolves as shown in
Figure 3, and after one cycle ends up at point
xt2b

which is lower than xt0b
(this can be deduced

from the directions of the vector fields shown
in Figure 2). It follows that trajectories of the
switched system starting anywhere between the
switching surfaces Φ1 and Φ2 (labelled as set H1

in Figure 3) cannot escape from that set, hence
H1 is a H-invariant set.

If the switching thresholds Φ1 and Φ2 are chosen
as explained above, it can be shown that there
exists an H-invariant set L with the properties
shown in Figure 4. The lower boundary of the set
is the trajectory of system (5) from xt0 to xt1 , the
upper boundary is the trajectory of system (5)
from xt∗

0
to xt∗

1
, while the switching thresholds

Φ1 and Φ2 form the side boundaries of the set.
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Fig. 4. H-invariant set L

The set L has the important property that with
repeated switching, all trajectories starting below
the lower boundary eventually enter the set from
below and remain within the set for all future
time. Similarly, all trajectories starting above the
upper boundary eventually enter the set L from
above and remain in the set for all future time.
Trajectories starting within L remain within the
set for all future time. Hence L is a H-invariant
set. Since the trajectories cannot escape from set
L, the steady-state value of state x2 is limited to
an upper bound of x2UB

and a lower bound of
x2LB

as shown by the dotted lines in Figure 4.

Proposition 4.1. : For a given set of switching
surfaces Φ1 and Φ2, the H-invariant set L shown
in Figure 4 contains one unique and stable limit
cycle.



The stability of the limit cycle can also be ana-
lyzed by use of a Poincaré map. The trajectory
sensitivity matrix after exactly one period T of
the limit cycle is known as the monodromy matrix
(Hiskens 2001, Seydel 1994), and the eigenval-
ues of this matrix determine the stability of the
limit cycle. The monodromy matrix always has
one eigenvalue of 1. If the rest of the eigenvalues
(known as characteristic multipliers or Floquet
multipliers) are less than 1, the limit cycle is
stable.

5. DESIGN RULES FOR THE CONTROLLER

To design the discrete part of the controller means
to fix the thresholds Φ1 and Φ2, which define
the events e1 and e2, and to select the control
law E (cf. Fig. 1). The uniqueness of the limit
cycle as stated in Proposition 4.1 implies that if
a limit cycle for surfaces Φ′

1 and Φ′
2 is found to

have vertices x0 and x1 (see Figure 5), then the
trajectory of the switched system for another set
of switching surfaces Φ1 and Φ2 passing through
points x0 and x1 will also converge to the same
limit cycle with vertices x0 and x1.

R1 R2

R4R3

0

x0

x1

x1

x2

x̄1

x̄2

x2MIN

x2MAX

Φ1Φ2

Φ′
1

Φ′
2

Fig. 5. Restricting state x2 to x2MIN
≤ x2 ≤

x2MAX

To design a controller to restrict the steady-state
value of state x2 to the range x2MIN

≤ x2 ≤
x2MAX

, two horizontal switching surfaces

Φ′
1(x) = −x2 + x2MIN

= 0, (10)

and
Φ′

2(x) = x2 − x2MAX
= 0, (11)

extending from region R1 to region R2 are selected
as shown in Figure 5. The vertices x0 and x1 of
the limit cycle are then calculated. This limit cycle
is restricted to the range x2MIN

≤ x2 ≤ x2MAX
as

shown in the figure.

Another set of non-intersecting switching surfaces
Φ1 and Φ2 originating along the x1 axis in re-

gion R1 and extending into region R3, and pass-
ing through points x0 and x1 is then selected.
These switching surfaces should not enclose any
of the equilibrium points between them. For the
new set of switching surfaces, the trajectory of
the switched system also converges to the same
limit cycle with vertices x0 and x1. The steady-
state value of state x2 for the switched system
is therefore restricted to the desired range of
x2MIN

≤ x2 ≤ x2MAX
.

For this design method, the trajectory is guaran-
teed to converge to the desired limit cycle as long
as the initial state is located in between surfaces
Φ1 and Φ2 (Figure 5). Furthermore, the choice
of switching surfaces Φ1 and Φ2 is not critical.
This method can therefore be applied to systems
where the initial state and the plant parameters
are not known exactly. Another advantage of this
method is that it works for systems which are not
completely state controllable.

Fig. 6. The Manufacturing Cell with Hybrid Dy-
namics

6. EXAMPLE

The manufacturing cell shown in Fig. 6 has a
hybrid dynamics. The task considered here is to
heat a metal block from an initial temperature
θB0 to a target temperature θBSET

by using a
workpiece which has been heated by placing it on
a heater. This involves the following sequence of
tasks:

• placing the workpieces on the heater
• controlling the power output of the heater

to achieve the desired workpiece temperature
(setpoint).

• placing the workpiece on the metal block



In general, it is not possible for the temperature
of the metal block to reach θBSET

by placing
the heated workpiece on it just one time, so the
workpiece has to be returned to the heater and
re-heated after which it is placed on the metal
block and the process is repeated until the target
temperature θBSET

is reached. Figure 7 shows this
process.

Storage Magazine/ Heater
Buffer Rail

Metal Block

Transportation Grip Arm

Fig. 7. Heating of a metal block

The time taken by the transportation grip arm to
move between the heater and the metal block is
is very short in comparison to the time constants
of the heating process. Hence, the transportation
grip arm is modelled as a discrete variable with
two possible values, one value representing the
position above the heater and the other value the
position above the metal block.

Assuming no disturbances, no measurement noise,
and constant room temperature, the open-loop
system can be described by the model introduced
in Section 2. Details of this model are given in
(Kamau 2004).

Denoting by e1 and e2 the discrete events as-
sociated with the transition guards Φ1 = g1 or
Φ2 = g2, respectively, shown in Fig. 8, the guide-
lines given in Section 5 yields the discrete control
law

q+ = e1q̄ + e2q . (12)

The results are shown on Figure 8. It can be seen
that the switching controller is able to transfer the
continuous state of the system from x2 = θB0

= 4
to x2 = θBSET

= 15, so the objective is met.
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Fig. 8. Simulation Results

7. CONCLUSION

An analysis and control design method for dis-
cretely controlled switched positive systems has
been described. If the continuous positive systems
have the structure described here, it is possible to
design stabilizing state-feedback controllers which
ensure that the trajectories of the switched system
cannot diverge to infinity regardless of the way the
switching thresholds are selected.

It was shown that the trajectories of the discretely
controlled switched positive system can be re-
stricted to invariant sets called H-invariant sets.
For a planar system, the trajectories within an H-
invariant set converge to a stable and unique limit
cycle as long as the initial state is chosen between
the switching surfaces. It was shown how this idea
can be applied to design controllers which restrict
the steady-state values of the continuous states to
desired sets.
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