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Abstract: It was recently shown that certain instances of the natural anti-windup
problem necessarily lead to control systems lacking robust “in the large” stability,
and that in such instances it is meaningful to solve a weakened anti-windup
problem (trading performance for robust stability). While previously proposed
solutions of the weakened problem essentially require state feedback, this paper
provides output feedback solutions for the case of additively perturbed systems.
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1. INTRODUCTION

The presence of input saturation nonlinearities
in otherwise linear closed loop systems can cause
dramatic performance losses known as “windup”
effects. Anti-windup compensation techniques de-
note modifications to the closed-loop aimed at
reducing as much as possible such losses. The first
anti-windup techniques date back to the 1950’s,
even before the advent of digital control systems.
Initial results on application specific solutions
were soon followed by results of much more gen-
eral applicability with formal stability guarantees
(see (Hanus, 1988; Kothare et al., 1994) for sur-
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veys of these early schemes). In the last decade,
several advanced techniques have been proposed
for the design of anti-windup compensators pro-
viding formal stability and performance guaran-
tees and often arising from optimality based syn-
thesis algorithms (see, e.g., (Grimm et al., 2003;
Kothare et al., 1994; Mulder et al., 2001; Peng et
al., 1998) and references therein).

As pointed out in (Teel and Kapoor, 1997a),
the rigorous definition of a natural anti-windup
problem entails two requirements: a) the closed
loop trajectories must not be modified as long as
saturation is inactive; b) input/output stability
between certain signals must be achieved.

In the presence of uncertainty on the controlled
plant, a “natural” robust anti-windup problem
can be defined by simply requiring (a) and (b)
to hold for all uncertainties in a suitable family
(usually, a set of perturbations having incremental
gain smaller than a given value); such an approach



has been considered e.g. in (Turner et al., 2004;
Grimm et al., 2004; Saeki and Wada, 2002), where
both analysis and synthesis results are given.

However, it was shown in (Galeani and Teel,
2004) that requirement (a) can impair the robust-
in-the-large (i.e., for all uncertainties in an a
priori given family) achievement of requirement
(b), even when a robust-in-the-large, globally
stabilizing controller is available for the satu-
rated perturbed plant; this motivated the defi-
nition of a relaxed anti-windup problem, which
is amenable of a global, robust-in-the-large so-
lution. The performance-robustness trade-off in-
volved in the definition of the relaxed problem
consists in imposing (a) only in nominal operating
conditions, meanwhile requiring (b) in a robust-
in-the-large fashion. It is important to remark
that neither approach is strictly better than the
other, as actually each one can be preferable to
the other depending on the specific application.
In particular, the former approach is better suited
for cases where non negligible (though sufficiently
small) uncertainty is always present on the plant,
so that performance must (and can) be guaran-
teed in a robust fashion; on the other hand, if
the nominal model of the plant is an accurate de-
scription in most operating conditions, but large
uncertainties (possibly impairing the achievement
of robust performance) may appear from time to
time, achieving nominal performance and robust
stability is enough to yield a high performance
control system. A more in-depth discussion on this
topic is found in (Galeani and Teel, 2004).

The state-feedback solution of the relaxed prob-
lem proposed in (Galeani and Teel, 2004) is
a modification of the L2 anti-windup compen-
sator of (Teel and Kapoor, 1997a), obtained
by merging the basic recipe for “uniting local
and global controllers” proposed in (Teel and
Kapoor, 1997b) with ideas from “two degrees of
freedom” (Grimble, 1994) and “model following”
(Tyler, 1964) controllers, and especially (Moore et
al., 1986), which shows how a high performance
controller can be “robustified” by means of an-
other robust controller. The main drawback of the
solution given in (Galeani and Teel, 2004) consists
in its inherently state-feedback nature; in fact,
its implementation by output feedback requires
rather restrictive conditions (Galeani, 2004).

The previous discussion motivated the interest
for the relaxed anti-windup problem, and for the
quest for existence conditions for output feedback
solutions to the problem. This paper provides a
partial answer to the question above, by showing
that such solutions always exist at least for the
class of additively perturbed systems. Such a class
of uncertain systems has been widely studied and
is particularly relevant in applications for several
reasons, among which the fact that identifica-
tion procedures often yield uncertain model sets

described by a nominal system and a (possibly
frequency shaped) set of additive perturbations
(see e.g. (Milanese and Taragna, 2002) and ref-
erences therein). Remarkably, the availability of
frequency dependent bounds on the magnitude of
the additive uncertainty can be exploited in the
design of the anti-windup compensators proposed
in this paper. In particular, the knowledge of
(possibly tight) frequency dependent bounds for
the additive uncertainty can be exploited in the
performance/robust-stability trade-off in order to
limit the performance loss due to off-nominal op-
erating conditions.
Notation

For a given convex set U ⊂ R
p and a vector

u ∈ R
p, let distU (u) := infw∈U (|u− w|), where |·|

represents the Euclidean norm; int(U) is the inte-
rior of U . Given two vectors x and y, their stacking
[x′ y′]′ will be denoted (x, y). The L2 norm of a

signal w(·) is defined as ‖w‖2 :=
√

∫ ∞
0

|w(t)|
2
dt,

and w ∈ L2 if ‖w‖2 < ∞. A system Σ with
input (u, v) and output (y, z) is said to have finite

incremental (L2 induced) gain γ
(Σ)
y,u ∈ R≥0 from u

to y if for any initial condition σ0, any input v(·),
and any pair of inputs u1(·), u2(·), it holds that

‖y(·;σ0, u1, v) − y(·;σ0, u2, v)‖2 ≤ γ(Σ)
y,u ‖u1 − u2‖2 ,

where y(t;σ0, u, v) is the output response at time
t to the initial condition σ0 and inputs u(·), v(·).
If Σ is linear time invariant (LTI) with transfer
function W (s), its incremental gain is equal to
‖W (s)‖∞ := supω∈R

σ (W (jω)), where σ (·) is the
maximum singular value of the argument. The
trivial system (whose output is identically null
for any input) is indicated by 0, and has zero
incremental gain.

2. PROBLEM DATA

Uncertain plants PΨ, connection of a nominal
model P and a “perturbation” Ψ, are considered:

ẋ = Ax+B2u, (1a)

z = C1x+D11d+D12u+ zΨ, (1b)

y = C2x+D21d+D22u+ yΨ, (1c)

with measured output y ∈ R
q, performance out-

put z, control input u ∈ R
p, exogenous distur-

bance d, while yΨ and zΨ are the outputs of a
perturbation Ψ ∈ S, where S is a set of incremen-
tally stable systems with Ψ ∈ S given by

ψ̇ = fΨ(ψ, u), (2a)

yΨ = h1,Ψ(ψ, u), (2b)

zΨ = h2,Ψ(ψ, u), (2c)

(different elements of S can have different state
spaces). 0 ∈ S is assumed, so that P0 = P .
Notice that there is no loss of generality, from
the input/output and stability point of view, in
considering the disturbance d as not affecting



(1a), since (1) is linear and (for the sake of
a global discussion) will be later assumed to
be asymptotically stable: under such conditions,
the effects of a disturbance d̄ affecting all three
equations (1) can be represented as the effect of
d, only affecting (1b) and (1c), with d a filtered
version of d̄.

Let Sρ := {Ψ ∈ S : γ
(Ψ)
yΨ,uΨ

< ρ} for ρ ∈ R>0,
i.e. Sρ ⊂ S contains only uncertainties with
incremental gain less than ρ from uΨ = u to yΨ.
A property (e.g., L2 stability) possibly enjoyed by
a system ΣΨ with a parameter Ψ ∈ S is nominal
if enjoyed by ΣΨ when Ψ = 0, it is robust in the
small (with respect to S) if enjoyed by ΣΨ for all
Ψ ∈ Sρ for some ρ ∈ R>0, it is robust-in-the-large
(with respect to S) if enjoyed by ΣΨ for all Ψ ∈ S.

In the anti-windup (aw) problem, a controller KM

(assumed to be linear for simplicity) designed for
system (1) is supposed to be given:

ẋc = Acxc +Bcuc + Ecr, (3a)

yc = Ccxc +Dcuc + Fcr, (3b)

(here, r is a reference signal) and the goal of aw
synthesis is to design an additional aw compen-
sator KAW of the form

ẋaw = faw (xaw, y, yc) , (4a)

v1 = haw,1 (xaw, y, yc) , (4b)

v2 = haw,2 (xaw, y, yc) , (4c)

which, suitably connected to PΨ and KM , ensures
some nice properties for the overall closed loop
system. Since it will be useful to have shorthand
notations to refer to different interconnections of
PΨ, KM and KAW , define the following closed
loop systems (cls): (1), (2), (3) form the uncon-
strained cls ΣU when u = yc, uc = y, and the
saturated cls ΣS when u = sat(yc), uc = y;
(1), (2), (3), (4) form the unconstrained aw cls
ΣUAW when u = yc + v1, uc = y + v2, and the
(saturated) aw cls ΣSAW when u = sat(yc + v1),
uc = y + v2. Different “hats” denote a signal
related to a system (e.g., the state x of P ) in
a cls: ·̄ denotes the signal in ΣU (e.g., x̄ for the
state of P as a subsystem of ΣU ), ·̃ denotes the
signal in ΣUAW (e.g., x̃ for the state of P as
a subsystem of ΣUAW ), and no hat denotes the
signal in ΣSAW (e.g., x for the state of P as a
subsystem of ΣSAW ).

Following (Teel and Kapoor, 1997a), σ : R
p →

R
p is a “saturation” function if ∃U ⊂ R

p, U
compact and convex, and ∃L, b ∈ R>0 such that
[σ(u + ϕ) − (u + ϕ)] ≤ Lu′(σ(u + ϕ) − ϕ) and
|σ(u+ w) − σ(u)| ≤ min{L |w| , b}, ∀u,w ∈ R

p,
∀ϕ ∈ U . The “standard” decoupled saturation
function yi = sign(ui)min{|ui| , ui,MAX}, i =
1, . . . , p, satisfies the above properties if U is
chosen as any compact and convex subset of the
interior of its linear region.

3. A WEAKENED GLOBAL L2 AW
PROBLEM

The main difference between a usual anti-windup
problem and the weakened problem of interest in
this paper consists in the fact that in the weakened
problem the overall closed loop response from d to
z is allowed to be modified in order to be able to
robustify the aw closed loop system with respect
to a larger class of uncertainties. Intuitively, such
a trade off is needed since both d and yΨ are
not measured (so that their contributions in (1c)
are not distinguishable), and then any “filtering”
action performed on yΨ in order to enhance ro-
bustness also affects the overall response to d,
thus modifying the response from d to z even for
Ψ = 0. While the interested reader is referred to
(Galeani and Teel, 2004) for a thorough discussion
on the relation between the global L2 aw problem
and its weakened version, the definition and solu-
tion of the original L2 aw problem in (Teel and
Kapoor, 1997a) is recalled next for completeness
(in a form restricted to the issues of interest here),
and in order to enable the reader to understand
the underlying basic issues. As a last remark, the
reader is warned about the fact that the cited is-
sues are not due to the solution of the aw problem
proposed in (Teel and Kapoor, 1997a), but to the
very “natural” definition of (L2) aw, so that if the
specific aw problem arising in a given application
is prone to the considered robustness issues, any
solution (independently from the approach used
in its synthesis) to such a problem will suffer from
the same issues.

For the global L2 aw problem to make sense, the
following assumption is needed.

Assumption 1. System ΣU is well-posed and in-
ternally stable for all Ψ ∈ S. 2

Definition 2. The robust (in the small), L2 aw
problem for U ⊂ R

p and S is to find an aw
compensator such that ΣSAW is well-posed and

(1) if xaw(0) = 0 and ū(·) ≡ sat (ū(·)) then
z(·) ≡ z̄(·);

(2) if distU (ū(·)) ∈ L2 then (z − z̄)(·) ∈ L2;

for all Ψ ∈ Sρ with sufficiently small ρ. 2

A sufficient condition, adapted from (Teel and
Kapoor, 1997a), for the solution of the global
L2 aw problem is as follows.

Theorem 3. Under Assumption 1, the problem in
Definition 2 is solvable if A is Hurwitz, and a
possible aw compensation is:

ẋaw = Axaw +B2[sat(yc + v1) − yc]; (5a)

v1 = −B′
2Pxaw; (5b)

v2 = −C2xaw −D22[sat(yc + v1) − yc]; (5c)

with P ∈ R
n×n, P = P ′ > 0: A′P + PA < 0. 2



For the global weakened L2 aw problem to make
sense, different assumptions are needed.

Assumption 4. System ΣU is well-posed and in-
ternally stable for Ψ = 0. 2

Compared to Assumption 1, Assumption 4 re-
quires ΣU to be only nominally stable, so thatKM

can be designed focusing on nominal performance,
disregarding robust stability issues.

Assumption 5. A is Hurwitz, all Ψ ∈ S have a
finite incremental gain from u to (yΨ, zΨ), and
there exists a γ ∈ R>0 such that Sγ = S. 2

Since no global result can be obtained for expo-
nentially unstable controlled plants with bounded
controls, Assumption 5 is quite mild in the present
context. Moreover, Assumption 5 is coherent with
the kind of nominal models and perturbation sets
obtained in several approaches to identification,

Definition 6. The weakened global L2 aw problem
for U with domain of robustness S is to find an aw
compensator such that ΣSAW is well-posed and

(1) for Ψ = 0 and d = 0, ∃x0
aw: if xaw(0) = x0

aw

and ū(·) ≡ sat (ū(·)), then z(·) ≡ z̄(·);
(2) ΣUAW is well-posed and internally stable;
(3) if distU (ũ(·)) ∈ L2 then (z − z̃)(·) ∈ L2.

for all Ψ ∈ S. 2

A comparison is in order between Definition 6
and Definition 2. Item 1 in Definition 6 requires
that, for references and initial conditions such
that saturation never activates in ΣS , the nominal
(Ψ = 0, d = 0) behaviour from r to z of ΣSAW

matches the corresponding behaviour of ΣU ; on
the other hand, item 1 in Definition 2 requires the
stronger property that for all Ψ having sufficiently
small incremental gain, for all signals (r, d) and
initial conditions such that the saturation never
activates in ΣS , the response from (r, d) to z in
ΣSAW matches the corresponding response in ΣU .

As for item 3 of Definition 6, similar to item 2
of Definition 2, the effectiveness of the aw is as-
sessed by bounding the L2 difference between the
responses of ΣSAW and another system which is
well-behaved robustly with respect to S; however,
contrary to what is done in item 2 of Definition 2
(also, compare Assumption 1 to Assumption 4),
the comparison system here is ΣUAW and not ΣU

(which needs not even to be stable for all Ψ ∈
S; instead, robust well-posedness and stability of
ΣUAW is required in item 2 of Definition 6). A pos-
itive consequence of not requiring robust stability
of ΣU is to decouple the problem of guaranteeing
robustness from the design of controller KM in
(3), which can then be focused on performance.
The additional item 2 of Definition 6 is then

clearly motivated by the need to ensure that the
saturating motions of ΣSAW are compared with
the motion of a system which is stable and well-
posed robustly in the large with respect to S.

4. MAIN RESULT

In the following theorem, F = (AF , BF , CF ,DF )
is a q−input, q−output asymptotically stable LTI
system with transfer matrix F (s).

Theorem 7. If Assumption 4 and Assumption 5
hold, ∃γ∗K ∈ R>0, ∃γ∗F (·) : R≥0 → R≥0 such
that ∀K ∈ R

p×n satisfying σ̄(K) < γ∗K , ∀ω ∈
R≥0, and ∀F (s) satisfying σ̄(F (jω)) < γ∗F (ω),
∀ω ∈ R≥0, the LTI aw compensation KAW =
(Aaw, Baw, Caw,Daw) with state xaw ∈ R

2n+nF ,
input uaw = (sat(yc + v1), y, yc), output yaw =
(v1, v2),

[

Aaw Baw

Caw Daw

]

=

=













A 0 0 B2 0 0
−BFC2 AF 0 −BFD22 BF 0

0 0 A 0 0 B2

−K 0 K 0 0 0
−DFC2 CF C2 −DFD22 DF − I D22













solves the problem in Definition 6. 2

Remark 8. The aw compensator in Theorem 7
has two main differences with respect to the one
in (Galeani and Teel, 2004): first, it does not
reduce to the L2 aw compensator in (Teel and
Kapoor, 1997a), i.e. (5), for a suitable choice
of F ; second, it requires no state measurements.
Clearly, the second feature is extremely important
from the point of view of implementation.
As for the relation of the proposed aw compen-
sator with (5), if no disturbances are present,
it is possible to define a “corresponding” L2 aw
compensator in the following sense: the response
induced in nominal conditions by the proposed aw
compensator (if suitably initialized) is the same
response induced by (5) with (5b) replaced by
v1 = −Kxaw. 2

The proof of Theorem 7 is omitted due to space
constraints; it is based on a small gain reasoning
and is similar to the proof of Theorem 3, by par-
titioning the state of KAW as x′aw =

[

x′S x′F x′M
]

(with xS ∈ R
n, xF ∈ R

nF , xM ∈ R
n) and

rewriting ΣSAW as:

PS :

{

ẋS = AxS +B2u,
yS := C2xS +D22u,

(6)

F :

{

ẋF = AFxF +BF (y − yS),
yF := CFxF +DF (y − yS),

(7)

PM :

{

ẋM = AxM +B2yc,
yM := C2xM +D22yc,

(8)

(9)



KM :

{

ẋc = Acxc +Bc(yM + yF ) + Ecr
yc = Ccxc +Dc(yM + yF ) + Fcr

(10)

P :















ẋ = Ax+B2u,
z = C1x+D11d+D12u+ zΨ,
y = C2x+D21d+D22u+ yΨ,
u = sat(yc + yK).

(11)

Remark 9. With respect to the compensator in
(Galeani and Teel, 2004), the need for state mea-
surements is avoided by using the estimates xS of
x, at the price of introducing n additional states
in KAW . 2

Remark 10. Comparing the interconnection con-
dition uc = y + v2 and (10), it is clear that
v2 = −y+yM +yF , so that the unconstrained con-
troller KM is not directly fed by the output of the
process. For implementation, it is more convenient
to realize uc = y+ v2 directly as uc = yM + yF . 2

Remark 11. As suggested in (Galeani and Teel,
2004), standard loop-shaping techniques can be
used to determine suitable K’s and F ’s (whose
existence is guaranteed by Theorem 7); a de-
tailed discussion on this issue is omitted due to
space constraints. However, it is worth at least
remarking that minimizing ‖I − F (s)‖∞ makes
the response of ΣUAW closer to the response of
ΣU (thus reducing the amount of aw performance
traded for robust stability in the weakened aw
problem), whereas a suitable choice of K yields
faster recovery after saturation occurs. 2

5. AN EXAMPLE

Consider the nominal mass-spring-damper system

ẋ = Ax+B2u =

[

0 1
−k/m −f/m

]

x+

[

0
1/m

]

u,

y = C2x =
[

1 0
]

x,

having state x′ =
[

q q̇
]

(where q and q̇ are the
position and the speed of the body attached to
the spring) for which m = 0.1, k = 1, f =
0.001. Since the poles of the system are very
underdamped, a two degrees of freedom controller
(such that yc(s) = Cfb(s) (Cff (s)r − uc(s)), with

Cfb(s) = 200 (s+5)2

s(s+80) and Cff (s) = 5
2s+5 ) is given

which induces a quickly convergent response, as-
ymptotic tracking of step references and rejec-
tion of step disturbances. In the presence of in-
put saturation, the saturated closed loop response
dramatically deteriorates, showing the need for
anti-windup compensation. The open loop, un-
constrained closed loop, saturated closed loop re-
sponses in nominal conditions are shown in Fig. 1;
the performance recovery achievable in nominal
conditions by using the weakened aw compensator
(equivalently, by using its “corresponding” L2 aw
compensator; see Remark 8) is clear from Fig. 1.

0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Reference
Open loop
Unconstrained closed loop
Saturated closed loop
L

2
/weakened antiwindup 

Fig. 1. Nominal (ψ = 0) output responses. The
L2 aw and the weakened aw outputs coincide.

Consider a real actuator with transfer function
V (s) = a

s+a
, with the parameter a usually rang-

ing in the set [100,∞) but occasionally dropping
in the set a ∈ [10, 100) due to particularly un-
favourable operating conditions. The use of the
real actuator (instead of the ideal V0(s) = 1) intro-
duces a set of input multiplicative perturbations
M := {µ(s) : µ(s) = −s

s+a
, a ∈ [10,∞)} ∪ {0}.

The set M can be recast as a set of additive
perturbations S := {Ψ(s) : Ψ(s) = P0(s)

−s
s+a

, a ∈

[10,∞)} ∪ {0}, where P0(s) := C2(sI − A)−1B2.

The upper bound |Ψ(jω)| < ψ̄(ω) :=
∣

∣

∣

jω
jω+10

∣

∣

∣
=

ω√
ω2+100

holds ∀Ψ ∈ S. For a < amin ≈ 17.4,

the unconstrained closed loop system ΣU becomes
unstable, so that for such values of a any non-
weakened form of anti-windup is not applicable.

The parameter K = 10−3
[

0.055 −605
]

is ob-
tained as K = −ρB′Q, with Q solution of AQ +
QA′ = − [ .1 .51

.51 10 ], and ρ chosen in such a way to
minimize the maximum real part of the eigenval-
ues of A+KB, while guaranteeing a L2 induced
gain smaller than 1.1 for the negative feedback
closed loop having the saturation in the forward

0 5 10 15
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Reference
Unconstrained closed loop
L

2
 antiwindup (ψ = 0)

L
2
 antiwindup

Weakened antiwindup

Fig. 2. Perturbed (a = 10) output responses. The
weakened aw output is close to the nominal
L2 aw, while the other responses are unstable.
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Fig. 3. Plant input for (a = 10). Limits cycles
show up if non-weakened aw is applied.

path and K(sI−A)−1B in the feedback path. The

choice F (s) = 10s2+.1s+100
s3+16s2+70s+100 yields

ψ̄(ω)σ̄((I+KG(jω))T (jω)F (jω)) < (1.1)−1,

∀ω ∈ R≥0, where T (s) is the transfer matrix from
input yF to output yc of the closed loop formed by
(8) and (10), and G(s) := (sI−A)−1B2. For com-
parison, in simulations the “corresponding” L2 aw
compensator (5) with v1 = −Kxaw (not satisfying
the small gain condition above) is considered.

Fig. 2 shows the response of the weakened aw
in presence of the severest perturbation in S
(a = 10), which is quite close to the nominal aw
response in Fig. 1, thus showing that the “aw per-
formance” loss due to the weakened formulation
of the aw problem is rather mild in this example.
Fig. 2 also shows that the unconstrained closed
loop is unstable for a = 10, so that any non-
weakened form of aw is not applicable for such
large parameter variations; in fact the response
with the “corresponding” L2 aw compensator (i.e.
(5) with v1 = −Kxaw) for a = 10 is characterized
by persistent oscillations, especially evident in the
last 5 seconds of simulation in the output in Fig. 2,
and in the input in Fig. 3.

6. CONCLUSIONS

An output feedback solution to the weakened anti-
windup problem for additively perturbed plants
has been proposed, thus overcoming the need for
state feedback for this class of uncertain systems.

Future work will focus on optimal design, adaptive
and order reduction for the proposed anti-windup
compensation. Moreover, it would be interesting
to characterize under which conditions the “anti-
windup performance” loss due to the relaxed for-
mulation of the anti-windup problem is negligible
(as in the example in this paper).
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