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Abstract: The present paper proposes a method for computing time-varying
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of the saturation term. From this representation, it is shown that, at each sampling
time, the matrices of the stabilizing time-varying controller can be computed from
the current system output and from constant matrices obtained as a solution of
some linear matrix inequalities. Optimization schemes allowing to address issues
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1. INTRODUCTION

The physical impossibility of applying unlimited
control signals makes the actuator saturation an
ubiquitous problem in control systems. In partic-
ular, it is well known that the input saturation is
source of performance degradation, limit cycles,
different equilibrium points, and even instability.
Hence, it has been great the interest in studying
these negative effects and also in proposing control
design procedures taking directly into account the
control bounds (see for instance (Bernstein and
Michel, 1995) and references therein).

Most of these works consider state feedback con-
trol laws. Although the proposition of state feed-
back methods allow to have a good insight into
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the problem, the practical applicability of these
methods is limited. Considering output feedback
solutions, less works are found in the literature.
Most of them focus on the determination of
global or semi-global stabilizing controllers (e.g
see (Stoorvogel and Saberi, 1999)). The main
drawback of these results is that they can only
be applied to null-controllable systems. More-
over, when performance or robustness require-
ments must be satisfied it can be impossible to
achieve global or semi-global stability. On the
other hand, we can found very few works dealing
with the synthesis of local stabilizing controllers
via output feedback. In (Gomes da Silva Jr. et
al., 2001), observer-based control laws are pro-
posed. The main problem is that the solutions
consider particular quadratic Lyapunov functions
(the P matrix should be block diagonal) which



leads, in general, to very conservative solutions. In
(Tyan and Bernstein, 1997), a method for design-
ing dynamic output controllers using of the Posi-
tive Real Lemma is proposed. The main objective
pursued in that paper is the minimization of an
LQG criterion. A region of stability is associated
to the closed-loop system. However, it should be
pointed out that the size and the shape of this
region are not taken into account in the design
procedure, which can lead to very conservative
domains of stability. Furthermore, the controller
is computed from the solution of strong coupled
Riccati equations which, in general, are not simple
to solve. A time-varying dynamic controller is
proposed in (Nguyen and Jabbari, 2000). Since
the proposed approach considers only continuous-
time systems, its main drawback resides in the
fact that the stability properties cannot be en-
sured if the controller is discretized for a digital
implementation. Furthermore, in that paper, no
explicitly consideration is made about the region
of attraction associated to the controller neither
about the internal stability of the system. On
the other hand, it should be pointed out that
all the references above are concerned only with
continuous-time systems.

The aim of this note is the proposition of a tech-
nique for the design of stabilizing dynamic output
feedback controllers for discrete-time linear sys-
tems in the presence of saturating actuators. In
addition to the asymptotic stability requirement,
two implicit design objectives are considered: the
maximization of the region of attraction of the
closed-loop system and the guarantee of a cer-
tain degree of time-domain performance for the
system operation in a neighborhood of the origin
(equilibrium point). The theoretical conditions
for solving the synthesis problem are based on a
polytopic representation of the closed-loop system
subject to saturation (Gomes da Silva Jr and
Tarbouriech, 2001). Using then the classical vari-
ables transformations as proposed in (Scherer et
al., 1997) and (de Oliveira et al., 2000), it is possi-
ble to formulate conditions that allow to compute
a linear time-varying dynamic controller that sta-
bilizes the closed-loop system. The matrices of the
controller are computed, at each sampling time,
from the current system output and from constant
matrices obtained as solution of some linear ma-
trix inequalities (LMIs) constraints. Optimization
problems to the determination of the controller
in order to enlarge the basin of attraction of the
closed-loop as well as enhance the time-domain
performance of the closed-loop system are there-
fore proposed. A numerical example is provided to
illustrate the application of the proposed method.

Notations. A(i) denotes the ith row of matrix A. For two

symmetric matrices, A and B, A > B means that A−B is

positive definite. A
′

denotes the transpose of A. ? stands

for symmetric blocks; • stands for an element that has no

influence on the development

2. PROBLEM STATEMENT

Consider the discrete-time linear system
{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

(1)

where x(k) ∈ <n, u(k) ∈ <m, y(k) ∈ <p are
the state, the input and the measured output
vectors, respectively, and k ∈ N . Matrices A, B
and C are real constant matrices of appropriate
dimensions. Pairs (A,B) and (C,A) are assumed
to be controllable and observable respectively. The
input vector u is subject to amplitude limitations
defined as follows:

|u(i)| ≤ u0(i), i = 1, ...,m (2)

where u0(i) > 0, i = 1, ...,m denote the control
amplitude bounds.

We suppose that only the output y(k) is available
for measurement. Hence our aim is to compute an
n-order stabilizing dynamic compensator in the
following form

xc(k + 1) = Ac(k)xc(k) + Bc(k)y(k)
vc(k) = Ccxc(k) + Dcy(k)

(3)

where xc(k) ∈ <n is the controller state, vc(k) ∈
<m is the controller output, matrices Ac(k),
Bc(k), Cc have appropriate dimensions. Note that
Ac(k) and Bc(k) are possibly time-varying matri-
ces. As a consequence of the control bounds, the
effective control signal applied to system (1) is a
saturated one:

u(k) = sat(vc(k)) = sat(Ccxc(k) + DcCx(k)) (4)

where each component, i = 1, . . . ,m, is defined by

sat(vc(k))(i) = sign(vc(k)(i))max{u0(i), |vc(k)(i)|}

The resulting closed-loop system is nonlinear and
can be written as

x(k + 1) = Ax(k) + Bsat(Ccxc(k) + DcCx(k))
xc(k + 1) = Ac(k)xc(k) + Bc(k)Cx(k)

(5)

3. MAIN RESULTS

Defining an augmented state vector z = [x′ x′
c]
′ ∈

<2n and the matrices A(k) =

(

A 0
Bc(k)C Ac(k)

)

,

B =

(

B
0

)

and K =
(

DcC Cc

)

, the closed-loop

system (5) can be re-written as

z(k + 1) = A(k)z(k) + Bsat(Kz(k)) (6)



Note now that each control entry, i = 1, . . . ,m,
can be re-written as follows:

u(k)(i) = sat(K(i)z(k)) = α(k)(i)K(i)z(k) (7)

with α(k)(i) = sign(K(i)z(k))min{ u0(i)

|K(i)z(k)| , 1}.
Note that α(k)(i) depends on the value of vc(i)(k) =
Cc(i)xc(k) + Dc(i)y(k) = K(i)z(k) at each instant.
Considering now the vector α(k) and a diagonal
matrix Γ(α(k)) = diag(α(k)), it follows that

u(k) = Γ(α(k))Kz(k) (8)

and the closed-loop system reads:

z(k + 1) = (A(k) + BΓ(α(k))K)z(k) = Ãkz(k)

Suppose now that z(k) belongs to the set

S(α) = {z ∈ <(2n); |K(i)z| ≤
u0(i)

α(i)

, i = 1, ...,m}(9)

where 0 < α(i) ≤ 1. In this case, it follows
that α(i) ≤ α(k)(i) ≤ 1, i = 1, ...,m. Hence, by
convexity there exists 0 ≤ λj,k ≤ 1, j = 1, . . . , 2m,

such that
∑2m

j=1 λj,k = 1 and

z(k + 1) = (A(k) + B
2m

∑

j=1

λj,kΓjK)z(k) = Ãkz(k)

where Γj , j = 1, . . . , 2m, are the vertices of
a polytope of diagonal matrices whose diagonal
elements Γj(i,i) take the value α(i) or 1 (Gomes
da Silva Jr and Tarbouriech, 2001).

Theorem 1. If there exists symmetric positive def-
inite matrices Y ∈ <(n∗n), X ∈ <(n∗n), matrices
Â,B̂,Ĉ,D̂ of appropriate dimensions, and scalars
0 < α(i) ≤ 1, i = 1, . . . ,m, satisfying the following
matrix inequalities









X In AX + BΓjĈ A + BΓjD̂C

In Y Â Y A + B̂C
? ? X In

? ? In Y









> 0

j = 1, ..., 2m.

(10)







X In α(i)Ĉ
′
(i)

In Y α(i)(D̂C)′(i)
? ? u2

0(i)






> 0 i = 1, ...,m. (11)

then the dynamic controller (3) with

Dc = D̂, Cc = (Ĉ −DcCX)(M ′)−1,
Bc(k) = N−1(B̂ − Y BΓ(α(k))Dc) and

Ac(k) = N−1(Â−NBcCX − Y BΓ(α(k))CcM
′ −

Y (A + BΓ(α(k))DcC)X)(M ′)−1,

where matrices M and N ∈ <2n∗2n verify the
relation MN ′ = I − XY guarantees that the
region E(P, 1) = {z(k) ∈ <2n ; z(k)′Pz(k) ≤ 1}

with P =

(

Y N
N ′ •

)

is a domain of asymptotic

stability for the closed-loop system (5).

Proof: Suppose that (10) is verified. Then, for all

convex sum
∑2m

j=1 λj,k = 1, it follows that

2m

∑

j=1

λj,k









X In AX + BΓjĈ A + BΓjD̂C

In Y Â Y A + B̂C
? ? X In

? ? In Y









> 0(12)

The terms of the secondary diagonal of (12) can
therefore be re-written as:







AX + B

2m

∑

j=1

λj,kΓjĈ A + B

2m

∑

j=1

λj,kΓjD̂C

Â Y A + B̂C






(13)

Considering P−1 =

(

X M
M ′ •

)

and defining Π1 =
(

X In

M ′ 0

)

and Π2 =

(

In Y
0 N ′

)

, it follows that

PΠ1 = Π2 and Π′
1PΠ1 = Π′

1Π2 =

(

X In

In Y

)

Consider now the following changing of variables
(Scherer et al., 1997)(de Oliveira et al., 2000):
Â = NAc(k)M ′ + NBc(k)CX+

Y BΓ(α(k))CcM
′ + Y (A + BΓ(α(k))DcC)X,

B̂ = Y BΓ(α(k))Dc + NBc(k),
Ĉ = DcCX + CcM

′, D̂ = Dc.
From the definition of Ãk, one obtains Π′

1P ÃkΠ1 =
(

AX + BΓ(α(k))Ĉ A + BΓ(α(k))D̂C

Â Y A + B̂C

)

.

Note that if (10) is verified, it follows that X −
Y −1 > 0, which implies that I−XY is nonsingular
and it is always possible to compute square and
nonsingular matrices N and M verifying the equa-
tion NM ′ = I −XY . This fact ensures that Π1 is
nonsingular. Then, right and left multiplying (12)

respectively by

(

Π−1
1 0
0 Π−1

1

)

and its transpose,

with λj,k such that
∑2m

j=1 λj,kΓj = Γ(α(k)), one
obtains
(

P P Ãk

Ã′
kP P

)

> 0⇔ P − Ã′
kP Ãk > 0 (14)

Right and left multiplying (11) respectively by
(

(Π′
1)

−1 0
0 1

)

and its transpose it follows that
(

P α(i)K
′
(i)

α(i)K(i) u2
0(i)

)

> 0, i = 1, ...,m, which

ensures that E(P, 1) ⊂ S(α).

Suppose now that z(k) ∈ E(P, 1). If (11) is satis-
fied, it follows that z(k) ∈ S(α) and there exist



λj,k such that
∑2m

j=1 λj,kΓj = Γ(α(k)). Hence, if
(10) is verified, from (14) it follows that

z(k)′Pz(k)− z(k)′Ã′
kP Ãkz(k) > 0

Hence, considering V (z(k)) = z(k)′Pz(k), it fol-
lows that V (z(k + 1)) < V (z(k). Since this rea-
soning can be applied ∀z(k) ∈ E(P, 1), we can
conclude that E(P, 1) is a contractive set and
V (z(k)) is a strictly decreasing Lyapunov function
for system (5) in E(P, 1). 2

Note that for computing the controller matrices
at the sampling time k it is necessary to ob-
tain Γ(α(k)). Since the matrices Cc and Dc are
time invariant, the output y(k) and the controller
state xc(k) are available, it follows that α(k)i =
sign(vc(i)(k))min{1, u0(i)/|vc(i)(k)|}, where vc(k) =
Kz(k) = Ccxc(k) + Dcy(k). Hence, at each sam-
pling time the following algorithm should be exe-
cuted.

Algorithm 1.

(1) compute vc(k) = Ccxc(k) + Dcy(k)
(2) apply u(k) = sat(vc(k)) to the process
(3) α(k)(i) = sign(vc(i)(k))min{1, u0(i)/|vc(i)(k)|}
(4) compute matrices Ac(k) and Bc(k).
(5) xc(k + 1) = Ac(k)xc(k) + Bc(k)y(k)
(6) xc(k)← xc(k + 1)

Note that in Theorem 1, the same matrices Â and
B̂ are considered for all vertices j = 1, . . . , 2m. In
order to reduce the conservatism of the condition,
the result can be adapted in order to consider
different matrices in each vertex. This result can
be summarized as follows.

Theorem 2. If there exists symmetric positive def-
inite matrices Y ∈ <(n∗n), X ∈ <(n∗n), matri-
ces Âj ,B̂j , Ĉ,D̂ of appropriate dimensions, j =
1, . . . , 2m, and scalars 0 < α(i) ≤ 1, i = 1, . . . ,m,
satisfying









X In AX + BΓjĈ A + BΓjD̂C

In Y Âj Y A + B̂jC
? ? X In

? ? In Y









> 0

j = 1, ..., 2m

(15)

and relation (11), then, considering the λj,k such

that Γ(α(k)) =
∑2m

j=1 λj,kΓj , the dynamic con-
troller (3) with
Dc = D̂, Cc = (Ĉ −DcCX)(M ′)−1,

Bc(k) = N−1(
∑2m

j=1 λj,kB̂j − Y BΓ(α(k))Dc),

Ac(k) = N−1(
∑2m

j=1 λj,kÂj −NBcCX −
Y BΓ(α(k))CcM

′−Y (A+BΓ(α(k))DcC)X)(M ′)−1,
where matrices M and N ∈ <2n∗2n verify the
relation MN ′ = I − XY , guarantees that the
region E(P, 1) = {z(k) ∈ <2n ; z(k)′Pz(k) ≤ 1}

is a domain of asymptotic stability for the closed-
loop system (5).

Proof: Let now 0 ≤ λj,k ≤ 1 such that, at

instant k,

2m

∑

j=1

λj,kΓj = Γ(α(k)) with

2m

∑

j=1

λj,k =

1. Considering now that (15) is verified ∀j =
1, . . . , 2m, it follows that:
















X In AX + BΓ(α(k))Ĉ A + BΓ(α(k))D̂C

In Y

2m

∑

j=1

λj,kÂj Y A +

2m

∑

j=1

λj,kB̂jC

? ? X In

? ? In Y

















> 0

From this point the proof mimics the one of
Theorem 1. 2

Differently from the previous result, now, in or-
der to compute the controller matrices at each
sampling time, it is necessary to determine ex-
plicitly the coefficients λj,k such that Γ(α(k)) =
∑2m

j=1 λj,kΓj . This can be easily accomplished by
obtaining a feasible solution for the following lin-
ear program:

min

2m

∑

j=1

λj,k

subject to
2m

∑

j=1

λj,kΓj = Γ(α(k)),
2m

∑

j=1

λj,k = 1,

0 ≤ λj,k ≤ 1

(16)

The algorithm to be performed at each sampling
time can now be slightly changed as follows.

Algorithm 2.

(1) compute vc(k) = Ccxc(k) + Dcy(k)
(2) apply u(k) = sat(vc(k)) to the process
(3) α(k)(i) = sign(vc(i)(k))min{1, u0(i)/|vc(i)(k)|}
(4) compute λk,j from (16)
(5) compute matrices Ac(k) and Bc(k)
(6) xc(k + 1) = Ac(k)xc(k) + Bc(k)y(k)
(7) xc(k)← xc(k + 1)

Although in this case it is necessary to find a feasi-
ble solution to a linear program at each sampling
time, it is worth to notice that this linear program
is very simple and in general the computational
burden involved in the solution is not prohibitive
even for relatively fast dynamics systems.

4. OPTIMIZATION PROBLEMS

4.1 Enlargement of the basin of attraction

An implicit objective in the synthesis of the sta-
bilizing controller (3) is the maximization of es-



timates of the basin of attraction associated to
the closed-loop system. In other words, we want
to compute (3) such that the associated region of
asymptotic stability is as large as possible consid-
ering some size criterion. This can be addressed
if we consider a set Ξ0 with a given shape and
a scaling factor β. This shape set can be easily
defined as a polyhedral described by the convex
hull of its vertices:

Ξ0
4
= Co{v1, v2, . . . , vnr

}, vl ∈ <2n, l = 1, . . . , nr

Hence, recalling Theorems 1 and 2, we aim at
searching for matrices X,Y, Â, B̂, Ĉ, D̂ and a vec-
tor α in order to obtain β Ξ0 ⊂ E(P, 1) with β as
large as possible

Note that in this case, the vectors vl can be viewed
as directions in which we want to maximize the
region of attraction. In particular it is interesting
to maximize the region of stability in directions
associated to the states of the plant. In this case
the vectors vl assume the form

(

v′
l1 0

)′
.

Noticing that β
(

v′
l1 0

)′ ∈ E(P, 1) is equivalent to

β
(

v′
l1 0

)

P
(

v′
l1 0

)′
β ≤ 1 and considering µ =

1/β2, it follows that β Ξ0 ⊂ E(P, 1) is equivalent
to:

v′
l1Y vl1 ≤ µ, l = 1, . . . , r (17)

Hence, maximize the ellipsoid E(P, 1) along the
directions vl1 is equivalent to minimize µ.

Note that matrix N , that appears in matrix P , is
not optimized in the above problem. On the other
hand, once one obtains a matrix Y , by maximizing
E(P, 1) in the space of the system state, it is
possible to explore the degrees of freedom in the
choice of matrix N . For instance, E(P, 1) can be
maximized along the directions given by generic
vectors vl =

(

v′
l1 v′

l2

)′
where vl1 ∈ <n and vl2 ∈

<n, by solving the following problem:

min
N,µ

µ

subject to




µ v′
l1 v′

l1Y + v′
l2N

′

vl1 X In

Y vl1 + Nvl2 In Y



 > 0

l = 1, . . . , r

(18)

where X et Y are given matrices verifying the
conditions of Theorem 1 (or 2).

Note that (18) is equivalent to

β
(

v′
l1 v′

l2

)

P
(

v′
l1 v′

l2

)′
β < 1

In order to proof this, it suffices to apply Schur’s
complement, pre and post multiply the obtained

matrix inequality respectively by F =

(

1 0 0
0 I 0

0 Y N

)

and F ′.

4.2 Performance Issues

In addition to the guarantee of stability for a
region as large as possible, the controller should
be designed in order to ensure some degree of
time-domain performance in a neighborhood of
the origin (Gomes da Silva Jr and Tarbouriech,
2001). Here we consider this neighborhood as the
region of linear behavior of the closed-loop system,
i.e., the region where the control inputs do not
saturate:

RL = {z ∈ <2n ; |K(i)z| ≤ u0(i), i = 1, . . . ,m}

When the system operates inside RL it follows
that Γ(α(k)) = I and Ac(k) and Bc(k) are
constant matrices which we denote as Ac and Bc.
In this case, the time-domain performance can
be achieved if we consider the pole placement

of the matrix A =

(

A + BDcC BCc

BcC Ac

)

in a

suitable region inside the unit circle. Considering
an LMI framework, the results stated in (Scherer
et al., 1997) can be used to place the poles in
a called LMI region in the complex plane. For
example, if we verify the following LMI,








rX rIn AX + BĈ A + BD̂C

rIn rY Â Y A + B̂C
? ? rX rIn

? ? rIn rY









> 0 (19)

it is easy to show that the poles of A will be placed
in a circle centered in zero and with ray r < 1. In
this case, smaller is r faster will be the decay rate
of the time-response inside the linearity region.

4.3 Optimization Problem

Based on the considerations stated in sections 4.1
and 4.2, the following optimization problem can
be formulated in order to compute a controller
with the aim of maximizing the basin of attraction
of the closed-loop system while ensuring some
time-domain performance near the equilibrium
point.

min
X,Y,Â,B̂,Ĉ,D̂,α

µ

subject to
v′

l1Y vl1 < µ l = 1, . . . , r
(10) (or (15)), (11) and (19)

(20)

For a fixed α, all the constraints in (20) are LMIs.
Hence, for systems with one or two the inputs,
the optimal solution can be easily found by an
iterative search on a grid defined by the compo-
nents of α. On the other hand, when the system
presents more inputs two steps can be performed
iteratively in order to obtain a suboptimal solu-
tion (Gomes da Silva Jr and Tarbouriech, 2001):



r = 0.95 r = 0.85

α β Th. 1 β Th. 2 β Th. 1 β Th. 2

1 15.801 15.801 8.700 8.700

0.8 18.506 19.202 10.689 10.873

0.7 18.534 19.055 10.700 12.098

Table 1. Trade-offs

(1) Fix α and solve (20) with X, Y , Â, B̂, Ĉ, D̂
as variables.

(2) Fix Ĉ and D̂ and solve (20) with X, Y , Â,
B̂ and α as variables.

Note that smaller are α larger tends to be the
region S(α), which allows to include larger regions
of stability E(P, 1) (see detailed comments in
(Gomes da Silva Jr and Tarbouriech, 2001)).

5. NUMERICAL EXAMPLE AND
CONCLUDING REMARKS

Consider the discrete-times system (1) with the
following matrices:

A =

(

0.8 0.5
−0.4 1.2

)

;B =

(

0
1

)

; C =
(

0 1
)

The control bounds is given by u0 = 7.

Note that matrix A is unstable (its eigenvalues are
1+0.4j et 1−0.4j). Our objective is to design a dy-
namic controller, in the form (3), that ensures the
stability of the system in an ellipsoidal region as
large as possible in the following directions

(

1 1
)′

and
(

1 −1
)′

. In addition to the maximization of
the stability region, a performance requirement
in terms of a pole placement inside a disk with
r = 0.8 should be satisfied.

In order to determine the dynamic controller sat-
isfying the requirements above, the optimization
problem (20) is considered. Using a grid procedure
in α, the optimal value for µ is obtained with
α = 0.625. In this case, the following is obtained:

P =







0.0042 0.0017 −0.0002 −0.0004

0.0017 0.0064 −0.0004 −0.0014

−0.0002 −0.0004 2.057 ∗ 104 5.681 ∗ 103

−0.0004 −0.0014 5.681 ∗ 103 2.489 ∗ 103







Ac(k) =

(

0.7818 2.0689
−0.2802 −0.7212

)

+

α(k)

(

−0.0115 1.5535
0.0287 −3.8809

)

Bc(k) =

(

−2.9213

4.3621

)

+ α(k)

(

0.0013

0.0049

)

Cc =
(

0.0074 0.0183
)

Dc =
(

−0.7728
)

Considering the optimization problem (20), Table
5 depicts the values obtained for β = 1/

√
µ, for

different values of r and α, and using conditions
of Theorems 1 and 2.

Similar to (Gomes da Silva Jr. et al., 2003), where
saturating state feedback control laws were stud-
ied, here we can also notice a trade-off between the
time-domain performance (measured by the pole

placement of the unsaturated system), the size of
the region of stability and the effective saturation
of the control law. Note that for smaller values
of r (more stringent performance requirement),
smaller are the values of β (i.e. smaller is the
region where the asymptotic stability is ensured)
are obtained. Moreover, in the presence of the
performance constraints, larger regions of stabil-
ity are obtained with effective saturating control
laws. Observe that the value obtained with α = 1
corresponds to the linear solution, i.e., the satu-
ration is avoided. Hence, for a given r, allowing
saturation, i.e. with values of α smaller than 1,
larger regions of stability are obtained. On the
other hand, as expected, the condition of Theorem
2 gives less conservative regions of stability.
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