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Abstract: This paper presents an approximate multi-parametric nonlinear programming 
approach to explicit solution of constrained nonlinear model predictive control (MPC) 
problems in the presence of model uncertainty. The case of time-invariant parameter 
uncertainty is considered. The explicit MPC controller is based on an orthogonal search 
tree structure of the state space partition and is designed by solving a min-max 
optimization problem. It is robust in the sense that all constraints are satisfied for all 
possible values of the uncertain parameters. The approach is applied to design an explicit 
min-max MPC controller for a continuous stirred tank reactor, where the heat transfer 
coefficient is an uncertain parameter. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Model predictive control (MPC) is an efficient 
methodology to solve complex constrained 
multivariable control problems in the absence, as well 
as in the presence of uncertainties (Mayne et al., 
2000). The requirement to perform on-line 
optimization, however, restricts the applicability of 
MPC to relatively slow processes. Recently, several 
methods for explicit solution of MPC problems have 
been developed. The main motivation behind explicit 
MPC is that an explicit state feedback law avoids the 
need for real-time optimization, and is therefore 
potentially useful for applications with fast sampling 
where MPC has not traditionally been used. 
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In (Bemporad et al., 2002; Seron et al., 2000; Tøndel 
et al., 2003) multi-parametric quadratic programming 
(mp-QP) algorithms for explicit solution of 
constrained linear MPC problems have been 
proposed. In (Johansen and Grancharova, 2003; 
Grancharova and Johansen, 2002), algorithms that 
determine an approximate explicit piecewise linear 
(PWL) state feedback solution by imposing an 
orthogonal search tree structure on the partition, have 
been developed. They may lead to even more efficient 
real-time computations. Some of the parametric 
programming approaches have been further extended 
to ensure robustness of the explicit MPC controllers 
against bounded additive or polytopic uncertainties 
(Bemporad et al., 2003; Kerrigan and Maciejowski, 
2003; Sakizlis et al., 2004; Grancharova and 
Johansen, 2003; Muñoz de la Peña et al., 2004). 
 
The methods mentioned above are applied to linear 
systems. Recently, approximate approaches to explicit 
solution of constrained nonlinear MPC problems have 
been developed in (Johansen, 2002; Johansen, 2004). 
They are based on the multi-parametric nonlinear 
programming (mp-NLP) technique described in 
(Fiacco, 1983). However, these approaches assume 
that the process model is known exactly. Since 

 

mailto:alexandra@icsr.bas.bg


models are only an approximation of the real process, 
it is important for MPC to be robust to model 
uncertainty. 
 
This paper suggests an approximate mp-NLP 
approach to explicit solution of constrained nonlinear 
MPC problems in the presence of model uncertainty. 
It is based on an orthogonal search tree structure of 
the state space partition and thus represents an 
extension of the approach in (Johansen, 2004). The 
explicit MPC controller is designed by solving a min-
max optimization problem, i.e. by minimizing the 
worst-case with respect to the uncertain parameters 
cost function value. The controller is robust in the 
sense that all constraints are satisfied for all possible 
values of the uncertain parameters. 
 
 

2. FORMULATION OF MIN-MAX MODEL 
PREDICTIVE CONTROL PROBLEM 

 
Consider the discrete-time nonlinear system: 
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where , , and  are the 
state, input and output variable, 
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θ  is the vector of 

time-invariant uncertain parameters that is assumed to 
belong to a bounded polyhedral set . It 
is also assumed that the function  is sufficiently 
smooth. It is supposed that a full measurement of the 
state  is available at the current time t. We 
consider the following open-loop robust MPC 
problem: For the current , MPC minimizes the 
worst-case cost function through the following 
optimization: 
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Here, N is a finite horizon. In (3), the existence of 
minimum and maximum are implicitly assumed. 
From a stability point of view it is desirable to choose 

 in (6) as small as possible (Mayne et al., 2000). 
However, due to the fact that  depends on the 
unknown , the feasibility of (3)–(9) will rely on  
being sufficiently large. A part of the MPC design 
will be to address this tradeoff. If the system is 

asymptotically stable (or pre-stabilized), N is large, 
and possibly an integral action is introduced to 
account for the steady-state effect of the uncertainty, 
then it is more likely that the choice of a small  will 
be possible. 
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The following assumptions are made: 
A1. . 0,, RQP
A2. . maxmin 0 yy <<
A3. θ  is time-invariant uncertainty that belongs to a 
bounded polyhedral set, i.e. . The 
polyhedral set  is defined by 

, where  and  
represent given lower and upper bounds on 
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, and such that . 
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Assumption A4 means that the point , 0x = stu u=  is 
a steady state point for system (1). It also implies that 
the steady state value of the control input will be 
different for the different values of the uncertain 
parameters. 
 
The worst-case value of cost function (9) with respect 
to the uncertain parameters is denoted by: 
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An optimal solution to the min-max MPC problem 
(3)–(9) is denoted  and the 
control input is chosen according to the receding 
horizon policy . The optimization problem 
can be formulated in a compact form as follows: 
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This min-max MPC problem defines an mp-NLP, 
since it is NLP in U parameterized by x. Define the 
set of N-step robustly feasible initial states as follows: 
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If assumption A4 is satisfied and  is chosen such 
that the problem (3)–(9) is feasible, then  is a non-
empty set. Then, due to assumption A2, the origin is 
an interior point in . 

δ
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3. APPROXIMATE MP-NLP APPROACH TO 
EXPLICIT MIN-MAX MODEL PREDICTIVE 

CONTROL 
 
 
3.1. Feasibility in the presence of model uncertainty. 
 
The numerical computations involved in constructing 
the approximate explicit state feedback are simplified 
under the following convexity assumption: 
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, where  is 

the set of admissible inputs. 
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We exploit the result in (Grossmann et al., 1983), 
where it has been shown that if the constraint function 

),,( θxUG  is jointly convex in U and θ , and there is 

U that is feasible at the vertices of , then U is 
feasible for all . This is formulated in the 
following lemma: 
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Lemma 1: 
Suppose A3 and A5 hold and denote the vertices of 
the polyhedron  with sA ℜ⊂Θ },...,,{ 21 Lθθθ . 

Denote also . If there exist U 
that satisfies the following constraints: 
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then U satisfies constraint (12). 
Thus, we can replace the infinite number of 
constraints (12) with the following finite amount of 
jointly convex constraints which are function only of 
U and x: 
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Then, the above problem can be formulated as: 
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where  is defined by (10). The following 
assumption is made: 
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The optimal solution to problem (16) will be denoted 

. We restrict our attention to a hyper-rectangle 

 where we seek to approximate the optimal 
solution  to the mp-NLP (16). In order to 
minimize the real-time computational complexity we 
require that the state space partition is orthogonal and 
can be represented as a k – d tree (Bentley, 1975; 
Grancharova and Johansen, 2002). The main idea of 
the approximate mp-NLP approach is to construct a 
robustly feasible piecewise linear (PWL) 
approximation  to  on 
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constituent affine functions are defined on hyper-
rectangles covering X . For this purpose, the solution 
of the problem (16) is computed at the  vertices of 
a considered hyper-rectangle  by solving up to  
NLPs. Based on these solutions, a robustly feasible 
local linear approximation  to the 

optimal solution , valid in the whole hyper-

rectangle , is determined. Let  denotes 
the worst-case value of the cost function (9) obtained 
with this approximation, i.e.: 
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Then, the robustly feasible local linear feedback law 
 is computed by applying the 

following lemma: 
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Suppose A1–A6 hold, and consider any bounded 
polyhedron  with vertices { }. If 
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then  is feasible for the mp-NLP 
(16) for all . 
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Proof: 
It follows from Lemma 2 in (Johansen, 2004). �  
 
 
3.2. Error bounds. 
 
It can be shown that the optimal cost function has the 
following properties (Mangasarian and Rosen, 1964; 
Johansen, 2004): 
Theorem 1: 
Suppose A1–A6 hold. Then  is a closed convex 

set, and  is convex and continuous. 
fX

ℜ→fXV :*
max

 
The accuracy of approximation will be measured by 
the difference between the optimal and sub-optimal 
cost functions. Since the optimal cost function 

 can not be assumed known, convexity may 
be exploited to compute simple bounds to be used for 
constructing the approximate solution, similar to 
(Fiacco, 1983). Consider the vertices { } 
of any bounded polyhedron . Define the 

affine function 
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Likewise, define the convex PWL function: 
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If  is not differentiable at , then  

is taken as any sub-gradient of  at  
(Rockafellar, 1970). Then, it can be shown that 
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1983; Johansen, 2004): 
Theorem 2: 
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Since defined in Lemma 2 is feasible in , it 
follows that the sub-optimal cost 

 is an upper bound on 

 in , such that for all  we have: 
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Computing 0ε  requires the solution of the NLP (24). 
If )(xV  is chosen as PWL (cf. (22)), this NLP is 

concave since  is convex. Hence, the 
optimization can be done efficiently since  is a 
polyhedron and it suffices to compare the solution at 
its vertices due to concavity. 
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3.3. Approximate mp-NLP algorithm for explicit min-

max model predictive control. 
 
Assume the tolerance 0>ε  of the cost function 
approximation error is given. The following algorithm 
is proposed to design explicit min-max MPC 
controller for constrained nonlinear systems with 
model uncertainty: 
Algorithm 1 (approximate mp-NLP for explicit 
min-max MPC) 
Step 1. Transform the original mp-NLP problem with 
model uncertainty (11)–(12) into the mp-NLP 
problem (16), by applying Lemma 1. 
Step 2. Initialize the partition to the whole hyper-
rectangle, i.e. . Mark the hyper-rectangle X as 
unexplored. 

{ }XP =

Step 3. Select any unexplored hyper-rectangle 
. If no such hyper-rectangle exists, the 

algorithm terminates successfully. 
PX ∈0

Step 4. Compute the solution to the NLP (16) for x 
fixed to each of the  vertices of the hyper-rectangle 

. If all NLPs have a feasible solution, go to step 6. 
Otherwise, go to step 5. 

n2
0X

Step 5. Compute the size of  using some metric. If 
it is smaller than some given tolerance, mark  
infeasible and explored and go to step 3. Otherwise, 
go to step 8. 

0X

0X

Step 6. Compute an affine state feedback  
using Lemma 2, as an approximation to be used in 

. If no feasible solution was found, go to step 8. 
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Step 7. Compute the error bound 0ε  in . If 0X εε ≤0 , 
mark  as explored and feasible and go to step 3. 0X
Step 8. Split the hyper-rectangle  into two hyper-
rectangles  and  by applying the heuristic 
splitting rule from (Grancharova and Johansen, 2002). 
Mark them unexplored, remove  from P, add  
and  to P, and go to step 3. 
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1X 2X
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If convexity does not hold (assumptions A5 and A6), 
then global optimization (Horst and Tuy, 1995) 
should be applied in several steps of the algorithm. 
This can be done in a way similar to that in (Johansen, 
2004): 
- The NLP (16) should be solved using global 

optimization in step 4. 
- The NLP (18)–(19) should be reformulated and 

solved using global optimization in step 6. It is not 
sufficient to impose the constraints at the vertices 
of the polyhedron  if  is not convex. One 
approach to resolve this problem is to include 
some interior points in addition to the set of 
vertices  when used in (18)–(19). 

0X G

{ Mvvv ,...,, 21 }
- The computation of the error bound 0ε  in step 7 

assumes the knowledge of a lower bound V  (cf. 
(22)) on the optimal cost function. In case of non-
convexity, additional (interior) points may be used 
in order to obtain a sufficiently accurate estimate 
of the bound V . 

 
In contrast to the conventional MPC based on real-
time optimization, the explicit MPC makes the 
rigorous verification and validation of the controller 
performance much easier (Johansen, 2004). Hence, 
problems due to lack of convexity and numerical 
difficulties can be addressed during the design and 
implementation. Notice that the off-line 
computational complexity and real-time computer 
memory requirements may grow very quickly with 
the number of states. 
 
 

4. SIMULATION EXAMPLE 
 
The proposed approach is applied to design an 
explicit min-max MPC controller for a continuous 
stirred tank reactor (CSTR) in which a first-order 
irreversible reaction A→B takes place (Figure 1). The 
mathematical model of CSTR and values of the 
parameters are taken from (Hicks and Ray, 1971). 
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Fig. 1. Continuous stirred tank reactor. 
 
The mass and heat balance of CSTR expressed 
through dimensionless concentration c~  and 
temperature T~  are: 
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where the dimensionless quantities c~ , T~ ,  and cT~ fT~  
are defined as follows: 
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The coolant flowrate u  is the control variable. The 
values of the parameters are taken from (Hicks and 
Ray, 1971) and are , , , 

, , , . The heat 
transfer coefficient 

10=q 1=fc 290=cT
300=fT 100=J 2.25=E 3000 =k

α  is an uncertain parameter that 
belongs to the interval: 

44 105.2109.1 −− ⋅≤≤⋅ α   (28) 
The coolant flowrate is constrained to be: 

6000 ≤≤ u         (29) 
We consider the set point 41.0~* =c , 3.3~* =T . Then, 
the model of the reactor can be written in the form: 

)~(
)~1(

1
*)~(

0
1

*
1 2

*
xcek

q
xc

dt
dx xT

E

+−
−−

= +
−

 (30) 

)~~(

)~(
)~~(

2
*

1
*)~(

0
2

*
2 2

*

c

xT
E

f

TxTu

xcek
q

xTT
dt

dx

−+−

++
−−

= +
−

α

(31) 

where  and  denote the deviations of the 
concentration and temperature from the set point 
values ( , ). We discretize the 
model (30), (31) using a sampling time . 

1x 2x

*
1

~~ ccx −= *
2

~~ TTx −=
1=sT

 
The approximate mp-NLP approach described in 
section 3 is applied to design an explicit min-max 
MPC controller for this reactor. The MPC minimizes 
the worst-case (maximal) value with respect to the 
uncertain parameter αθ =  of the cost function (9) 
subject to the system equations (30), (31) and the 
input constraint (29). In (9), the cost matrices are: 

6101,}300,100{diag −⋅=== RPQ  (32) 
The horizon is . In (6), it is chosen 30=N 002.0=δ . 
The state space to be partitioned is defined by 

. The state space partition 
of the min-max MPC controller is shown in Figure 2. 
It has 94 regions and 10 levels of search. With one 
scalar comparison required at each level of the k-d 
tree, 10 arithmetic operations are required in the worst 
case to determine which region the state belongs to. 
Totally, 14 arithmetic operations are needed in real-
time to compute the control input (10 comparisons, 2 
multiplications and 2 additions). 
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The performance of the closed-loop system was 
simulated for initial condition  and 
for three values of the uncertain parameter 
( , , ). The 
resulting closed-loop response is depicted in the state 
space (Figure 2), as well as trajectories in time 

(Figure 3 to Figure 6). It can be seen that the explicit 
min-max MPC controller brings the reactor to the 
desired set point despite of the model uncertainty, and 
the constraints imposed on the system are satisfied. In 
order to avoid a possible offset, the dual-mode control 
strategy of (Michalska and Mayne, 1993) was applied 
and a locally stabilizing control law was used in a 
neighborhood of the origin. 

Tx ]3.058.0[)0( =

41.9 10α −= ⋅ 42.2 10α −= ⋅ 42.5 10α −= ⋅

 
The non-convexity in this example was handled by 
considering also internal points of the hyper-
rectangles in addition to vertices, as suggested in 
section 3.3. Also, the optimal solution to the NLP 
problem was determined by comparing the solutions 
obtained with different initial guesses for the 
optimization vector. 
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Fig. 2. State space partition of the explicit min-max 

MPC and the state trajectories corresponding to 
, , . 41.9 10α −= ⋅ 42.2 10α −= ⋅ 42.5 10α −= ⋅
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Fig. 4. State trajectory corresponding to . 41.9 10α −= ⋅
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Fig. 6. State trajectory corresponding to . 42.5 10α −= ⋅
 
 

5. CONCLUSIONS 
 
An approximate mp-NLP approach to explicit 
solution of constrained nonlinear MPC problems in 
the presence of model uncertainty is suggested. The 
explicit MPC controller is based on an orthogonal 
search tree structure of the state space partition and is 
designed by solving a min-max optimization problem. 
The approach is applied to design an explicit min-max 
MPC controller for a continuous stirred tank reactor, 
where the heat transfer coefficient is an uncertain 
parameter. 
 

REFERENCES 
 
Bemporad, A., F. Borrelli and M. Morari (2003). 

Min-max control of constrained uncertain 
discrete-time linear systems. IEEE Transactions 
on Automatic Control, 48, 1600-1606. 

Bemporad, A., M. Morari, V. Dua, and E. N. 
Pistikopoulos (2002). The explicit linear quadratic 
regulator for constrained systems. Automatica, 38, 
3-20. 

Bentley, J. L. (1975). Multidimensional binary search 
trees used for associative searching. 
Communications of the ACM, 18, 509–517. 

Fiacco, A. V. (1983). Introduction to sensitivity and 
stability analysis in non-linear programming. 
Academic press, New York. 

Grancharova, A. and T. A. Johansen (2002). 
Approximate explicit model predictive control 
incorporating heuristics. In: Proceedings of IEEE 
International Symposium on Computer Aided 
Control System Design, Glasgow, pp.92-97. 

Grancharova, A. and T. A. Johansen (2003). Design 
of robust explicit model predictive controller via 
orthogonal search tree partitioning. In: 
Proceedings of the European Control Conference, 
Cambridge, U.K. 

Grossmann, I. E., K. P. Halemane and R. E. Swaney 
(1983). Optimization strategies for flexible 
chemical processes. Computers and Chemical 
Engineering, 7, 439-462. 

Hicks, G. and W. Ray (1971). Approximation 
methods for optimal control synthesis. The 
Canadian Journal of Chemical Engineering, 49, 
522-528. 

Horst, R. and H. Tuy (1995). Global optimization. 
Berlin, Springer. 

Johansen, T. A. and A. Grancharova (2003). 
Approximate explicit constrained linear model 
predictive control via orthogonal search tree. IEEE 
Transactions on Automatic Control, 48, 810-815. 

Johansen, T. A. (2002). On multi-parametric 
nonlinear programming and explicit nonlinear 
model predictive control. In: Proceedings of IEEE 
Conference on Decision and Control, Las Vegas, 
NV, vol.3, pp.2768-2773. 

Johansen, T. A. (2004). Approximate explicit 
receding horizon control of constrained nonlinear 
systems. Automatica, 40, 293-300. 

Kerrigan, E. C. and J. M. Maciejowski (2003). On 
robust optimization and the optimal control of 
constrained linear systems with bounded state 
disturbances. In: Proceedings of the European 
Control Conference, Cambridge, U.K. 

Mangasarian, O. L. and J. B. Rosen (1964). 
Inequalities for stochastic nonlinear programming 
problems. Operations Research, 12, 143-154. 

Mayne, D. Q., J. B. Rawlings, C. V. Rao and P. O. M. 
Scokaert (2000). Constrained model predictive 
control: Stability and optimality. Automatica, 36, 
789-814. 

Michalska, H. and D. Q. Mayne (1993). Robust 
receding horizon control of constrained nonlinear 
systems. IEEE Transactions on Automatic 
Control, 38, 1623-1633. 

Muñoz de la Peña, D., A. Bemporad and C. Filippi 
(2004). Robust explicit MPC based on 
approximate multi-parametric convex 
programming. In: Proceedings of IEEE 
Conference on Decision and Control, Bahamas. 

Rockafellar, R. T. (1970). Convex analysis, Princeton 
University Press, New Jersey. 

Sakizlis, V., N. M. P. Kakalis, V. Dua, J. D. Perkins 
and E. N. Pistikopoulos (2004). Design of robust 
model-based controllers via parametric 
programming. Automatica, 40, 189-201. 

Seron, M., J. A. De Dona and G. C. Goodwin (2000). 
Global analytical model predictive control with 
input constraints. In: Proceedings of IEEE 
Conference on Decision and Control, Sydney. 

Tøndel, P., T. A. Johansen and A. Bemporad (2003). 
An algorithm for multi-parametric quadratic 
programming and explicit MPC solutions. 
Automatica, 39, 489-497. 

 


	Alexandra Grancharova1, 2, 3 and Tor A. Johansen4
	Algorithm 1 (approximate mp-NLP for explicit min-max MPC)
	REFERENCES



