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Abstract: A methodology for safety verification of nonlinear systems using barrier
certificates has been proposed recently. The condition was stated in a sufficiency
form: if there exists a barrier certificate, then the system is safe, in the sense that
there is no trajectory starting from a given set of initial states that reaches a
given unsafe region. Using the concepts of convex duality and density functions,
in this paper we derive a converse statement for barrier certificates, showing that
in a quite general setting the existence of a barrier certificate is also necessary for
safety. Copyright c© 2005 IFAC.
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1. INTRODUCTION

Safety verification addresses the question whether
an unsafe or bad region in the state space is
reachable by some system trajectories starting
from a set of initial states. The need for safety
verification arises as the complexity of the system
increases, and is also underscored by the safety
critical nature of the system.

Various methods have been proposed for safety
verification. For verification of finite state sys-
tems, model checking techniques (Clarke, Jr. et

al., 2000) have been quite successful and have gar-
nered a popularity that prompts the development
of analogous approaches for verification of con-
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tinuous systems, which mostly require computing
the propagation of initial states (see e.g. (Alur et

al., 2003; Kurzhanski and Varaiya, 2000)). Unfor-
tunately, while these methods allow us to compute
an exact or near exact approximation of reachable
sets, it is difficult to perform such a computation
when the system is nonlinear and uncertain.

Using a different approach, we recently proposed
a method for safety verification that is based on
what we term barrier certificates (Prajna and
Jadbabaie, 2004). Our conditions for safety can be
stated as follows. Given a system ẋ = f(x) with
the state x taking its value in X ⊆ R

n, a set of
initial states X0 ⊆ X , and an unsafe set Xu ⊆ X ,
suppose there exists a continuously differentiable
function B : R

n → R such that

B(x) ≤ 0 ∀x ∈ X0, (1)



B(x) > 0 ∀x ∈ Xu, (2)

∂B

∂x
(x)f(x) ≤ 0 ∀x ∈ X . (3)

Then the system is safe, i.e., there is no trajectory
x(t) of the system such that x(0) ∈ X0, x(T ) ∈ Xu

for some T ≥ 0, and x(t) ∈ X for all t ∈ [0, T ].

A function B(x) satisfying (1)–(3) is called a
barrier certificate. The above method is analo-
gous to the Lyapunov method for stability analy-
sis (Khalil, 1996), and is also closely related to the
use of viability theory (Aubin, 1991) and invariant
sets (Jirstrand, 1998) for safety verification. When
the vector field f(x) is polynomial and the sets
X , X0, Xu are semialgebraic, a polynomial barrier
certificate B(x) can be searched using sum of
squares programming (Prajna et al., 2002). The
method can also be extended to handle hybrid,
uncertain, and stochastic systems (Prajna and
Jadbabaie, 2004; Prajna et al., 2004), or to verify
other system properties such as reachability and
eventuality (Prajna and Rantzer, 2005).

In the present paper, we derive a converse state-
ment for barrier certificates. We use convex dual-
ity and density functions (Rantzer, 2001; Rantzer
and Hedlund, 2003) to show that under some
reasonable technical conditions, there exists a bar-
rier certificate if and only if the system is safe.
In Section 2, we give an intuitive illustration of
the main idea by addressing the verification of
a simple discrete system. The main result of the
paper is presented and proven in Section 3. Some
concluding remarks will be given in Section 4.

Notations: We denote the spaces of m-times con-
tinuously differentiable functions mapping X ⊆
R

n to R
n by Cm(X ,Rn), and X to R by Cm(X ).

The spaces of continuous functions are denoted
by C(X ,Rn) and C(X ), equipped with the supre-
mum norm if necessary. The zero subscript as in
C1

0 (Rn) indicates compact support. For a normed
vector space K, the dual space is denoted by K∗.
Finally, the flow of ẋ = f(x) starting at x0 is
denoted by φt(x0).

2. A DISCRETE EXAMPLE

To give an intuitive flavor of the ideas used in the
main theorem, let us consider the verification of
a simple discrete system, shown in Figure 1. The
system has four states, labelled 1 through 4, and
three transitions between states, represented by
the directed edges. We assume that node 1 is the
initial state and node 4 is the unsafe state.

For this system, conditions analogous to (1)–(3)
that must be satisfied by a barrier certificate
can be formulated. One way to find a barrier
certificate which proves safety is by solving the
linear program (LP):
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Fig. 1. A simple discrete system. The nodes rep-
resent the states of the system, while the
directed edges represent transitions between
states.

max B4 −B1

subject to B2 −B1 ≤ 0,

B3 −B2 ≤ 0,

B4 −B2 ≤ 0,

where the decision variables B1, B2, B3, B4 are re-
als, and Bi corresponds to the value of the barrier
certificate at node i. If there is a feasible solution
of the above problem such that the objective func-
tion is strictly positive, then there exists a barrier
certificate for the system, and consequently there
is no path going from node 1 to node 4.

The dual of the above LP is as follows:

min 0

subject to ρ12 ≥ 0, ρ23 ≥ 0, ρ24 ≥ 0,

ρ12 = 1, ρ24 = 1, ρ23 = 0,

ρ24 + ρ23 − ρ12 = 0,

The dual decision variable ρij can be interpreted
as the transportation density from node i to
node j. The equality constraints basically state
that conservation of flows holds at each node –
the total flow into a node is equal to the total
flow out. In addition, the first and second equality
constraints indicate that there exist a unit source
at node 1, i.e., the initial state, and a unit sink
at node 4, i.e., the unsafe state. This duality
interpretation has been studied extensively in the
past; see, e.g., (Papadimitriou and Steiglitz, 1998)
and references therein.

The existence of a feasible solution to the dual
LP implies the existence of a path from the initial
state to the unsafe state. This can be shown using
the facts that the flows are conserved and that
there are a unit source and a unit sink at the
initial state and unsafe state, respectively. Hence,
solving the dual LP can be used for verifying
reachability. As a matter of fact, we obtain a
linear programming formulation of the shortest
path problem if we also add the objective function
∑

ρij to the dual LP. In this case, the nonzero
entries corresponding to any optimal vertex solu-
tion to the LP will indicate a shortest path from



the initial node to the unsafe node (Papadimitriou
and Steiglitz, 1998).

This duality argument can also be used to prove
that the existence of a barrier certificate is both
sufficient and necessary for safety. For this, sup-
pose that there exists no barrier certificate for the
system, which is equivalent to the maximum ob-
jective value of the primal LP being equal to zero.
This objective value is attained by, e.g., Bi = 0 for
all i. The linear programming duality (Boyd and
Vandenberghe, 2004) implies that there exists a
feasible solution to the dual LP, from which we can
further conclude the existence of a path from the
initial state to the unsafe state, as explained in the
previous paragraph. It is exactly the continuous
counterpart of this argument that we will develop
in the next section.

For the above example, the optimal objective
value of the primal LP is equal to zero, and hence
the safety property does not hold. The unique
feasible solution to the dual LP is given by ρ12 =
1, ρ23 = 0, ρ24 = 1, which shows the path from
node 1 to node 4. Had the direction of the edge
from node 2 to node 4 been reversed, for example,
the optimal objective value of the corresponding
primal LP will be ∞, and there will be no feasible
solution to the dual LP.

3. CONTINUOUS SYSTEMS

The main result of the paper is as follows.

Theorem 1. Consider the system ẋ = f(x) with
f ∈ C1(Rn,Rn). Let X ⊂ R

n, and X0 ⊆ X ,
Xu ⊆ X be compact sets, and suppose that
there exists a function B̃ ∈ C1(Rn) such that
∂B̃
∂x

(x)f(x) < 0 for all x ∈ X . Then there exists a
function B ∈ C1(Rn) that satisfies

B(x) ≤ 0 ∀x ∈ X0, (4)

B(x) > 0 ∀x ∈ Xu, (5)

∂B

∂x
(x)f(x) ≤ 0 ∀x ∈ X (6)

if and only if the safety property holds, i.e., if
there exists no trajectory x(t) of the system such
that x(0) ∈ X0, x(T ) ∈ Xu for some T ≥ 0, and
x(t) ∈ X for all t ∈ [0, T ].

Notice that in the theorem we have used a seem-
ingly strong assumption that there exists a func-

tion B̃ ∈ C1(Rn) such that ∂B̃
∂x

(x)f(x) < 0 ∀x ∈
X . In Section 4 we will show that in many cases
of interest the existence of such B̃(x) is actually
guaranteed.

Our proof of the converse statement in Theorem 1
consists of two parts, given in Lemmas 2 and 4 be-
low. In the first lemma, we use the Hahn-Banach

theorem to show that the non-existence of a B(x)
satisfying the conditions in Theorem 1 implies the
existence of measures ψ0, ψu, ρ satisfying some
appropriate conditions. Then, in Lemma 4 we
show that the existence of such ψ0, ψu, ρ actually
implies that there exists an unsafe trajectory of
the system.

Lemma 2. Let f ∈ C1(Rn,Rn), and X ⊂ R
n,

X0 ⊆ X , Xu ⊆ X be compact sets. Suppose
there exists a function B̃ ∈ C1(Rn) such that
∂B̃
∂x

(x)f(x) < 0 for all x ∈ X . Then there exists no
B ∈ C1(Rn) satisfying (4)–(6) only if there exist
measures of bounded variation ψ0, ψu, ρ (each
defined on R

n) such that ψ0, ψu, ρ are nonnegative
on R

n and equal to zero outside X0, Xu, and X
respectively; and

∫

X0

dψ0 = 1,

∫

Xu

dψu = 1,

∇ · (ρf) = ψ0 − ψu,

where ∇ · (ρf) is interpreted as a distributional
derivative.

Proof. Consider the convex optimization problem

sup Bu −B0,

subject to B(x) −B0 ≤ 0 ∀x ∈ X0,

B(x) −Bu ≥ 0 ∀x ∈ Xu,

∂B

∂x
(x)f(x) ≤ 0 ∀x ∈ X ,

with the supremum denoted by γ, and taken over
all B0 ∈ R, Bu ∈ R, and B ∈ C1(Rn). Since
B0 = 0, Bu = 0, and B(x) = 0 satisfy the
constraint, γ must be greater than or equal to
zero. In addition, since the objective function and
the constraints are all linear, the value of γ is
either 0 or ∞. There exists no B ∈ C1(Rn)
satisfying (4)–(6) if and only if the value of γ is
equal to zero.

Now suppose that γ = 0. Let K = R × (C(X ))3,
B = R

2 × C1
0 (Rn), and define K1, K2 as follows:

K1 = {(z, h0, hu, h) ∈ K : h0 = B0 −B on X ,

hu = B −Bu on X , h = −
∂B

∂x
f on X ,

z = Bu −B0, and (B0, Bu, B) ∈ B},

K2 = {(z, h0, hu, h) ∈ K : z ≥ 0, h0 ≥ 0 on X0,

hu ≥ 0 on Xu, h ≥ 0 on X}.

Then both K1 and K2 are convex sets, and K2

has non-empty interior in K. Furthermore, since
γ = 0, it follows that the first component in K1 is
less than or equal to zero when the second, third,
and fourth components are greater than or equal
to zero, and therefore K1 ∩ int(K2) = ∅. Now,
by the Hahn-Banach theorem (Luenberger, 1969),
there exists a nonzero k∗ = (a, ψ̃0, ψ̃u, ρ̃) ∈ K∗ =
R × (C(X )∗)3 such that



sup
k1∈K1

〈k∗, k1〉 ≤ inf
k2∈K2

〈k∗, k2〉, (7)

where C(X )∗ in this case is the set of measures on
X with bounded variation. The right-hand side of
the inequality can be expanded as follows

inf
k2∈K2

〈k∗, k2〉

= inf
(z,h0,hu,h)∈K2

az + 〈ψ̃0, h0〉 + 〈ψ̃u, hu〉 + 〈ρ̃, h〉

=







0, if a ≥ 0; ψ̃0, ψ̃u, ρ̃ ≥ 0; and

ψ̃0, ψ̃u are zero outside X0,Xu resp.,
−∞, otherwise.

Now denote the extension of ψ̃0, ψ̃u, ρ̃ to the whole
R

n by ψ0, ψu, ρ, which are obtained by letting
them equal to zero outside of X . Then, for the left-
hand side of (7), we have the following equality:

sup
k1∈K1

〈k∗, k1〉

= sup
(B0,Bu,B)∈B

a(Bu −B0) + 〈ψ0, B0 −B〉

+ 〈ψu, B −Bu〉 + 〈ρ,−
∂B

∂x
f〉

= sup
(B0,Bu,B)∈B

(−a+

∫

dψ0)B0 + (a−

∫

dψu)Bu

+ 〈−ψ0 + ψu + ∇ · (ρf), B〉

=















0, if

∫

Rn

dψ0 = a,

∫

Rn

dψu = a, and

−ψ0 + ψu + ∇ · (ρf) = 0
∞, otherwise,

where ∇ · (ρf) is interpreted as a distributional
derivative. Thus, for the supremum to be less than
or equal to the infimum, we must have a nonzero
(a, ψ0, ψu, ρ), where ψ0, ψu, ρ are measures of
bounded variation on R

n, such that a ≥ 0; ψ0,
ψu, ρ are nonnegative; ψ0, ψu, ρ are equal to zero
outside X0, Xu, and X respectively; and

∫

Rn

dψ0 = a,

∫

Rn

dψu = a,

∇ · (ρf) = ψ0 − ψu.

We will next show that because of the assump-
tion that there exists a B̃ ∈ C1(Rn) such that
∂B̃
∂x

(x)f(x) < 0 for all x ∈ X , we must have a > 0.
For this, let L = (C(X ))3, and define

L1 = {(h0, hu, h) ∈ L : h0 = B0 −B on X ,

hu = B −Bu on X , h = −
∂B

∂x
f on X ,

and (B0, Bu, B) ∈ B},

L2 = {(h0, hu, h) ∈ L : h0 ≥ 0 on X0,

hu ≥ 0 on Xu, h ≥ 0 on X}.

Note in particular that due to the above assump-
tion and the compactness of X0, Xu, X , we have
L1∩ int(L2) 6= ∅ . Now consider k∗ = (a, ψ̃0, ψ̃u, ρ̃)
that we have before. Suppose that a = 0 and
substitute this to (7). Then we have a nonzero
(ψ̃0, ψ̃u, ρ̃) ∈ (C(X )∗)3, such that

sup
ℓ1∈L1

〈(ψ̃0, ψ̃u, ρ̃), ℓ1〉 ≤ inf
ℓ2∈L2

〈(ψ̃0, ψ̃u, ρ̃), ℓ2〉.

This implies that L1 ∩ int(L2) = ∅, which is con-
tradictory to the above. Thus a must be strictly
positive. Without loss of generality, assume that
k∗ is scaled such that a = 1. This completes the
proof of our lemma.

Next, we will show that the existence of ψ0, ψu, ρ
in the conclusion of Lemma 2 implies that there
exists an unsafe trajectory of the system. Since in
this case we have a density function ρ which is
in fact a measure, we need a version of Liouville
theorem which applies to measures.

Lemma 3. Let f ∈ C1(D,Rn) where D ⊆ R
n is

open. For a measurable set Z, assume that φt(Z)
is a subset of D for all t between 0 and T . If ρ is
a measure of bounded variation on D such that
ρ has a compact support and the distributional
derivative ∇ · (ρf) is also a measure of bounded
variation with compact support, then

∫

φT (Z)

dρ−

∫

Z

dρ =

∫ T

0

∫

φt(Z)

d(∇ · (ρf))dt.

Proof. Choose ρ1, ρ2, . . . ∈ C∞
0 (D) such that

ρk → ρ in the (weak) topology of distributions.
Then also ∇ · (ρkf) → ∇ · (ρf) in the sense of
distributions. In particular

lim
k→∞

∫

X

d|ρk − ρ| = 0,

lim
k→∞

∫

X

d|∇ · (ρkf) −∇ · (ρf)| = 0

for every X ⊂ D. The lemma was proven for the
case of smooth ρ in (Rantzer, 2001), i.e.,

∫

φT (Z)

ρk(x)dx−

∫

Z

ρk(x)dx

=

∫ T

0

∫

φt(Z)

[∇ · (ρkf)(x)]dxdt.

So the desired equality is obtained in the limit as
k → ∞.

Lemma 4. Consider the system ẋ = f(x) with
f ∈ C1(Rn,Rn), and let X ⊂ R

n, X0 ⊆ X ,
Xu ⊆ X be compact sets. Suppose there exist
measures of bounded variations ψ0, ψu, ρ such
that ψ0, ψu, ρ are nonnegative on R

n and equal
to zero outside X0, Xu, and X respectively; and
∫

X0

dψ0 = 1,
∫

Xu

dψu = 1, ∇ · (ρf) = ψ0 − ψu.

Then there exists a T ≥ 0 and a trajectory x(t) of
the system such that x(0) ∈ X0, x(T ) ∈ Xu, and
x(t) ∈ X for all t ∈ [0, T ].

Proof. Let X1,X2, ... ⊆ R
n be a sequence of open

sets such that X0 ⊆ Xi for all i and limi→∞Xi =
X0. In addition, define the measurable sets



Zi =
⋃

x0∈Xi

{x ∈ R
n : x = φt(x0) for some t ≥ 0},

for i = 1, 2, 3, and so on. By the assertions of the
lemma, both ρ and ∇ · (ρf) are measures with
bounded variation and compact support, so we
can use Lemma 3 and ∇·(ρf) = ψ0−ψu to obtain
the relation

∫

φt(Zi)

dρ−

∫

Zi

dρ =

∫ t

0

∫

φτ (Zi)

d(ψ0 − ψu)dτ

for all t ≥ 0. Since ρ ≥ 0 and φt(Zi) ⊆ Zi

for all t ≥ 0, the left-hand side of the above
expression is less than or equal to zero. It follows
from

∫

X0

dψ0 = 1 and ψ0 ≥ 0 that Xu ∩ Zi 6= ∅
for all i = 1, 2, ..., for otherwise the right-hand
side of the expression can be made strictly greater
than zero by taking some t > 0 and we obtain a
contradiction. Since the sets X0 and Xu are closed,
we conclude that φT (x0) ∈ Xu for some T ≥ 0 and
x0 ∈ X0. For our purpose, let T be the first time
instance such that φT (x0) ∈ Xu.

The case in which T = 0 is trivial since X0 ⊆ X .
Consider now the case in which T > 0. We will
show that φt(x0) ∈ X for all t ∈ [0, T ] by a
contradiction. Suppose to the contrary that there
exists T̃ ∈ (0, T ) such that φT̃ (x0) /∈ X . Then, for
a sufficiently small open neighborhood U of x0,
we have

φT̃ (U) ⊂ R
n \ (X ),

φt(U) ∩ Xu = ∅ ∀t ∈ [0, T̃ ].

Use again Lemma 3:
∫

φ
T̃

(U)

dρ−

∫

U

dρ =

∫ T̃

0

∫

φτ (U)

d(ψ0 − ψu)dτ.

Since ρ = 0 on R
n \ (X ), the first term on the

left is equal to zero, and therefore the left-hand
side is non-positive, which leads to a contradiction
since the right-hand side is strictly greater than
zero. This lets us conclude that φt(x0) ∈ X for all
t ∈ [0, T ], thus finishing the proof of the lemma.

We are now ready to present the proof of the main
theorem.

Proof of Theorem 1.

(⇒): Assume that there exists a B(x) satisfying
(1)–(3), while at the same time the system is not
safe, i.e., there is an initial condition x0 ∈ X0

such that the flow x(t) of the model ẋ = f(x)
starting at x(0) = x0 satisfies x(t) ∈ X for all
t ∈ [0, T ] and x(T ) ∈ Xu. Condition (3) states
that the Lie derivative of B(x) along this flow
is non-positive. A direct consequence of this is
that B(x(T )) must less than or equal to B(x(0)),
which is contradictory to (1)–(2). Thus the initial
assumption is not correct: the system is safe.

(⇐): Follows from Lemmas 2 and 4.

4. CONCLUDING REMARKS

The result stated in Theorem 1 uses the as-
sumption that the following Slater-like condition
(Boyd and Vandenberghe, 2004) is fulfilled: that
there exists a function B̃ ∈ C1(Rn) such that
∂B̃
∂x

(x)f(x) < 0 for all x ∈ X . While in the
discrete case strong duality holds (and hence the
necessity of barrier certificates too) without such
an assumption, its proof depends on a special
property of polyhedral convex sets, which does
not carry over to the continuous case. Eliminating
this condition in the continuous case will presum-
ably require a different proof technique than the
one presented in this paper. Nevertheless, there
are cases in which the condition is automatically
fulfilled, for instance when the trajectories of the
system starting from any x0 ∈ X leave a neighbor-
hood of X at least once, as shown in the following
proposition.

Proposition 5. Consider the system ẋ = f(x) with
f ∈ C1(Rn,Rn) and let X ⊂ R

n be a compact set.
Suppose there exist an open neighborhood X̃ of X
and a time instant T > 0 such that for all initial
conditions x0 ∈ X , we have the flow φt(x0) outside
of cl(X̃ ) for some t ∈ [0, T ]. Then there exists a

function B̃ ∈ C1(Rn) such that ∂B̃
∂x

(x)f(x) < 0
for all x ∈ X .

Proof. Let Y be an open neighborhood of X such
that its closure is contained in X̃ . In addition,
let ξ ∈ C1(Rn) be a nonnegative function such
that ξ(x) = 1 for all x ∈ Y and ξ(x) = 0 for all
x /∈ X̃ ; also let ψ ∈ C1(Rn) be a function such
that ψ(x) > 0 for all x ∈ X and ψ(x) = 0 for
all x /∈ Y. Now consider the differential equation
ẋ = ξ(x)f(x). Denote the flow of ẋ = ξ(x)f(x)
starting at x0 by φ̃t(x0). Modulo a time re-
parameterization, the flows φ̃t(x0) and φt(x0) are
identical up to some finite time. Next define

B̃(x0) =

∫ ∞

0

ψ(φ̃t(x0))dt.

For all x0 in a neighborhood of X , the flow
φ̃t(x0) is outside of Y for large t, and thus by
its construction ψ(φ̃t(x0)) is equal to zero for
large t and for all such x0. It follows that B̃(x)
is well defined on a neighborhood of X . The
function B̃(x) is continuously differentiable on X
since both ψ(x) and φ̃t(x) are also continuously
differentiable. Taking the total derivative of B̃(x)
with respect to time, we obtain

∂B̃

∂x
(x)ξ(x)f(x) = −ψ(x),

which is strictly less than zero, on X . Finally,
recall that on X we have ξ(x) = 1. This completes
the proof of the proposition.



While the above Slater-like condition excludes the
possibility of applying Theorem 1 when there is,
e.g., an equilibrium point in X , analysis can still
be performed by excluding a neighborhood of the
equilibrium point from X in the condition (3). If
the excluded region is either backward or forward
invariant, and does not intersect X0 and Xu, then
the safety criterion (4)–(6) will still apply in terms
of the original sets.

Finally, note also that when all the connected
components of R

n \X are either forward or back-
ward invariant, an even stronger safety criterion
can be obtained, as in the following proposition.

Proposition 6. Let the system ẋ = f(x) with f ∈
C1(Rn,Rn) and the compact sets X0 ⊂ R

n, Xu ⊂
R

n be given, with 0 /∈ X0 ∪ Xu. Suppose that the
origin is a globally asymptotically stable equilib-
rium of the system with a global strict Lyapunov
function V (x) 2 . Let ǫ1 = minx∈X0∪Xu

V (x) and
ǫ2 = maxx∈X0∪Xu

V (x). Then there exists a func-
tion B ∈ C1(Rn) satisfying

B(x) ≤ 0 ∀x ∈ X0, (8)

B(x) > 0 ∀x ∈ Xu, (9)

∂B

∂x
(x)f(x) ≤ 0 ∀x ∈ {x ∈ R

n : ǫ1 ≤ V (x) ≤ ǫ2},

(10)

if and only if there exists no trajectory x(t) of the
system such that

x(0) ∈ X0, (11)

x(T ) ∈ Xu for some T ≥ 0. (12)

Proof. Define X = {x ∈ R
n : ǫ1 ≤ V (x) ≤ ǫ2}.

In this case, the existence of a function B̃ ∈

C1(Rn) such that ∂B̃
∂x

(x)f(x) < 0 for all x ∈ X
is guaranteed by Proposition 5, and even the
Lyapunov function V (x) can be used as B̃(x). By
Theorem 1, there exists a function B ∈ C1(Rn)
satisfying (8)–(10) iff there exists no trajectory
x(t) of the system such that x(0) ∈ X0, x(T ) ∈
Xu for some T ≥ 0, and x(t) ∈ X ∀t ∈ [0, T ].

Since the connected components of R
n \ X are

either forward or backward invariant, however,
there can be no trajectory x(t) of the system
and time instants T1, T2, T3 such that T1 < T2 <
T3, x(T1) ∈ X , x(T2) ∈ R

n \ X , and x(T3) ∈
X . This combined with the fact that X0,Xu ⊆
X implies that the set of trajectories satisfying
x(0) ∈ X0, x(T ) ∈ Xu for some T ≥ 0, and
x(t) ∈ X ∀t ∈ [0, T ] is the same as the set of
trajectories satisfying (11)–(12), and therefore the
statement of the proposition follows.

2 That is, V ∈ C1(Rn) is radially unbounded, V (x) >

0 ∀x 6= 0, and ∂V

∂x
(x)f(x) < 0 ∀x 6= 0.
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