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Abstract: In this paper, a new bias-compensated least-squares (BCLS) based
algorithm is proposed for identification of noisy input-output system. It is well
known that BCLS method is based on compensation of asymptotic bias on the
least-squares (LS) estimates by making use of noise variances estimates. The main
feature of the proposed algorithm is to introduce a generalized least-squares type
estimator in order to obtain the good estimates of noise variances. The results of a
simulated example indicate that the proposed algorithm provides good estimates.
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1. INTRODUCTION

Many identification methods are based on the
assumption that input measurement is noise-free.
However, this condition is not satisfied in most
practical situations. In the presence of input noise,
those methods have been shown to give erro-
neous results. Several methods have been pro-
posed to estimate unknown parameters of lin-
ear discrete-time system in the presence of input
and output noises. Joint Output (JO) method
(Söderström, 1981) and Koopmans-Levin (KL)
method (Fernando and Nicholson, 1985) require
a priori knowledge about the values of variances
or the ratio to measurements noises.

Bias-compensated least-squares (BCLS) method
is proposed by Sagara et al. (Sagara and Wada,

1977) and it has been extended by Wada et al.
(Wada et al., 1990) to the input-output noise case
without any a priori knowledge of noise variances.
BCLS method based on compensation of asymp-
totic bias on the least-squares (LS) estimates by
making use of noise variances estimates is very
efficient method for estimation of noisy input-
output system parameters. In recent years, BCLS
method has been developed to improve the esti-
mation accuracy and several recursive algorithms
have been proposed (Eguchi et al., 1992; Jia et
al., 2001).

On the other hand, another method named bias-
eliminated least-squares (BELS) method has been
proposed by Zheng et al. (Zheng and Feng, 1989)
in which the different estimation method of
asymptotic bias is used and further developed to



be the efficient method (Zheng, 1999; Zheng, 2000;
Zheng, 2001; Zheng, 2002) to treat bias problem
in noisy input-output system identification.

In this paper, a new BCLS based algorithm is
proposed for identification of linear discrete-time
system in the case where input and output mea-
surements are corrupted by white noise. Since the
unknown noise variances estimates are required
for compensation of asymptotic bias of LS es-
timates, the estimation of these noise variances
plays an important role in BCLS method. If the
good estimates of noise variances are obtained, the
estimation accuracy of the resulting BCLS esti-
mates can be improved. For this purpose, a gen-
eralized least-squares type estimator is introduced
in order to obtain the good estimates of noise vari-
ances. It is demonstrated that the improvement in
the estimate accuracy of noise variances estimates
(and the resulting BCLS estimates) is achieved.

This paper is organized as follows. In section 2 and
section 3, the problem statement is presented and
the asymptotic bias of LS estimator is described.
In section 4, the BCLS algorithm is derived for
estimating unknown parameters of linear discrete-
time system in the presence of input and output
noises and it can be learned that the unknown
noise variances must be estimated in order to
obtain consistent estimates of parameters. In sec-
tion 5, the recursive algorithm of unknown noise
variances are derived by introducing a general-
ized least-squares type estimator and in section
6, Jia et al.’s BCLS method (Jia et al., 2001) and
Zheng’s BELS method (Zheng, 2001) are briefly
described. The simulation results are presented in
section 7 and finally section 8 gives the conclusion.

2. PROBLEM STATEMENT

Consider the parameter estimation problem of
single-input single-output linear discrete-time sys-
tem described as follows:

A(q−1)yt = B(q−1)ut (1)

where ut and yt are the true input and output,
q−1 is shift operator, q−1ut = ut−1, and the
polynomials A(q−1) and B(q−1) are defined by

A(q−1) = 1 + a1q
−1 + · · ·+ anq−n (2)

B(q−1) = b1q
−1 + · · ·+ bnq−n . (3)

Let zt and wt be the noise-corrupted measure-
ments of yt and ut, respectively, i.e.

zt = yt + et, wt = ut + dt (4)

where et and dt are the output and input measure-
ment noises, respectively. The measurement noises
et and dt have the following statistical properties

E[dt] = 0, E[et] = 0 (5)

E[didj ] = σ2
dδi,j , E[eiej ] = σ2

eδi,j (6)

E[diej ] = 0 (7)

where δi,j is Kronecker’s delta. The true input
ut is zero-mean stationary random process with
finite variance, and ut, dt and et are assumed to
be statistically independent of each other.

Substituting (4) into (1) yields

A(q−1)zt = B(q−1)wt + vt (8)

where vt is a composite noise defined by

vt = A(q−1)et −B(q−1)dt . (9)

Define some vectors as

θT = [aT , bT ] = [a1 · · · an, b1 · · · bn] (10)

pT
t = [−zT

t , wT
t ]

= [−zt−1 · · · − zt−n, wt−1 · · ·wt−n] (11)

qT
t = [−yT

t , uT
t ]

= [−yt−1 · · · − yt−n, ut−1 · · ·ut−n] (12)

rT
t = [−eT

t , dT
t ]

= [−et−1 · · · − et−n, dt−1 · · · dt−n] (13)

then (4), (8) and (9) can be written as

pt = qt + rt (14)

zt = pT
t θ + vt (15)

vt = et − rT
t θ . (16)

Let the equation error ξt for an estimate θ̂ of θ
be defined as

ξt = Â(q−1)zt − B̂(q−1)wt

= zt − pT
t θ̂ (17)

where the polynomials Â(q−1) and B̂(q−1) are
defined by

Â(q−1) = 1 + â1q
−1 + · · ·+ ânq−n (18)

B̂(q−1) = b̂1q
−1 + · · ·+ b̂nq−n (19)

and

θ̂
T

= [âT , b̂
T
] = [â1 · · · ân, b̂1 · · · b̂n] . (20)

The least-squares estimate is given by

θ̂LS,N =

(
N∑

t=1

ptp
T
t

)−1 N∑
t=1

ptzt . (21)

From the assumption of et and dt, the composite
noise vt defined by (9) is not white. Hence the



least-squares estimate θ̂LS,N has a bias asymp-
totically. In the next section, the asymptotic bias
induced by least-squares estimator is derived.

3. ASYMPTOTIC BIAS OF LEAST-SQUARES
ESTIMATOR

Substituting (15) into (21) yields

θ̂LS,N = θ + P N

N∑
t=1

ptvt (22)

where P N is the product moment matrix as
follows:

P N =

(
N∑

t=1

ptp
T
t

)−1

. (23)

Taking probability limit of above equation yields

p lim
N→∞

θ̂LS,N = θ + h (24)

where h is the asymptotic bias of the least-squares
estimate θ̂LS,N defined as

h = R−1
pp p lim

N→∞
1
N

N∑
t=1

ptvt (25)

where Rpp = E[ptp
T
t ]. Using the assumption of

et, dt and (14), (16), it is easily shown that

p lim
N→∞

1
N

N∑
t=1

ptvt = E[ptvt]

= E[(qt + rt)(et − rT
t θ)]

=−E[rtr
T
t ]θ

=−Dθ (26)

where D = diag{σ2
eIn; σ2

dIn} and In is n × n
identity matrix. From (24), (25) and (26), the
asymptotic bias h can be expressed as follows:

h = p lim
N→∞

θ̂LS,N − θ

= R−1
pp {−Dθ} . (27)

4. BIAS-COMPENSATED LEAST-SQUARES
METHOD

From (24), it can be expected that a consistent
estimate of θ can be obtained by compensating
for the asymptotic bias h in the least-squares
estimate θ̂LS,N . From (27), estimate of the asymp-
totic bias h becomes

ĥN = −NP NDθ . (28)

Hence bias-compensated least-squares estimate
θ̂BC,N is given by

θ̂BC,N = θ̂LS,N − ĥN

= θ̂LS,N + NP NDθ̂BC,N−1 . (29)

The recursive algorithm of θ̂LS,N and P N are
obtained by the ordinary recursive least-squares
algorithm

θ̂LS,N = θ̂LS,N−1+
P N−1pN (zN−pT

N θ̂LS,N−1)
1+pT

NP N−1pN

(30)

P N = P N−1−P N−1pNpT
NP N−1

1+pT
NP N−1pN

. (31)

Practically the variances of input and output
noises σ2

e and σ2
d in (29) are unknown, it is

necessary to estimate them.

5. ESTIMATION OF NOISE VARIANCES

To estimate the noise variances of input and
output noises σ2

e and σ2
d, a filter α(q−1) defined

by the following equation is introduced

α(q−1) =
l∑

i=0

αiq
−i, (l ≥ n) . (32)

Now, let the filtered signal for equation error ξt

be defined as

ξ̃t = α(q−1)ξt =
l∑

i=0

αiξt−i . (33)

Minimizing the sum of squared ξ̃t yields the esti-
mator ϕ̂N of θ

ϕ̂N =

(
N∑

t=1

p̃tp̃
T
t

)−1 (
N∑

t=1

p̃tz̃t

)
(34)

where p̃t is the filtered signal for pt and z̃t is the
filtered signal for zt as

p̃t = α(q−1)pt =
l∑

i=0

αipt−i (35)

z̃t = α(q−1)zt =
l∑

i=0

αizt−i . (36)

The estimator ϕ̂N can be considered as general-
ized least-squares type estimator, and the recur-
sive algorithm of ϕ̂N is obtained by



ϕ̂N = ϕ̂N−1+
P̃ N−1p̃N (z̃N − p̃T

N ϕ̂N−1)

1 + p̃T
N P̃ N−1p̃N

(37)

P̃ N = P̃ N−1 − P̃ N−1p̃N p̃T
N P̃ N−1

1 + p̃T
N P̃ N−1p̃N

(38)

where

P̃ N =

(
N∑

t=1

p̃tp̃
T
t

)−1

. (39)

It follows from (14) that

z̃t = p̃T
t θ + ṽt (40)

where ṽt is the filtered signal for vt as

ṽt = α(q−1)vt =
l∑

i=0

αivt−i . (41)

Define the the sum of squared residual f̂N as

f̂N =
N∑

t=1

̂̃
ξ
2

t =
N∑

t=1

(z̃t − p̃T
t ϕ̂N )2

=
N∑

t=1

z̃tṽt − ϕ̂T
N

N∑
t=1

p̃tṽt (42)

where ̂̃
ξt is the residual of the estimator ϕ̂N

defined by

̂̃
ξt = z̃t − p̃T

t ϕ̂N . (43)

Taking probability limit of (42) yields

p lim
N→∞

1
N

N∑
t=1

z̃tṽt = E[z̃tṽt]

= σ2
e

(
l∑

i=0

α2
i + ρT a

)
(44)

and

p lim
N→∞

1
N

N∑
t=1

p̃tṽt = E[p̃tṽt]

=−σ2
e

[
ρ
0n

]
− D̃θ (45)

where

ρT =

[
l−1∑

i=0

αiαi+1,

l−2∑

i=0

αiαi+2, · · · ,
l−n∑

i=0

αiαi+n

]

(46)

D̃ = diag{σ2
eHn; σ2

dHn} (47)

Hn =
l∑

i=0

α2
i In

+
n−1∑

j=1

l−j∑

i=0

αiαi+j

[
(Sn)(j) + (ST

n )(j)
]

(48)

Sn =
[
0T

n−1 0
In−1 0n−1

]
(49)

and 0n is an n× 1 zero vector.

Finally,

p lim
N→∞

1
N

f̂N

=σ2
e

{
l∑

i=0

α2
i +ρT

(
a+p lim

N→∞
ϕ̂a,N

)}

+σ2
e p lim

N→∞
ϕ̂T

a,NHna+σ2
d p lim

N→∞
ϕ̂T

b,NHnb (50)

where ϕ̂T
N = [ϕ̂T

a,N , ϕ̂T
b,N ].

Now, let

αi =
{

1 , i = 0
0 , 1 ≤ i ≤ l

(51)

then the estimator ϕ̂N in (34) becomes the least-
squares estimate θ̂LS,N , and f̂N becomes the sum
of squared residual defined by

ĝN =
N∑

t=1

ξ̂2
t (52)

where ξ̂t is the residual of the least-squares esti-
mate θ̂LS,N defined by

ξ̂t = zt − pT
t θ̂LS,N . (53)

It follows from (50) that

p lim
N→∞

1
N

ĝN

=σ2
e +σ2

e p lim
N→∞̂

aT
LS,Na+σ2

d p lim
N→∞

b̂
T

LS,Nb . (54)

From (50) and (54), the estimates of input and
output noise variances σ2

e and σ2
d can be obtained

by solutions of system of equations

[
1+âT

LS,N âBC,N−1 b̂
T

LS,N b̂BC,N−1

α̂N +ϕ̂T
a,NHnâBC,N−1 ϕ̂T

b,NHnb̂BC,N−1

][
σ̂2

e

σ̂2
d

]

=
1
N

[
ĝN

f̂N

]
(55)

where

α̂N =
l∑

i=0

α2
i + ρT

(
âBC,N−1 + ϕ̂a,N

)
(56)

θ̂
T

BC,N = [âT
BC,N , b̂

T

BC,N ] . (57)



6. THE PREVIOUSLY PROPOSED
BIAS-COMPENSATION PRINCIPLE BASED

METHODS

In this section, Jia et al.’s BCLS method (Jia
et al., 2001) and Zheng’s BELS method (Zheng,
2001) are briefly described, which are different
estimation methods of noise variances.

6.1 Jia et al.’s BCLS method

Consider an auxiliary estimator φ̂N defined by

φ̂N =

(
N∑

t=1

pt−1p
T
t−1

)−1 N∑
t=1

pt−1zt . (58)

Define ĵN by

ĵN =
N∑

t=1

(zt − pT
t−1φ̂N )zt−1 (59)

then the following expression can be obtained

p lim
N→∞

1
N

ĵN

= σ2
e p lim

N→∞
φ̂

T

a,Na + σ2
d p lim

N→∞
φ̂

T

b,Nb (60)

where φ̂
T

N = [φ̂
T

a,N , φ̂
T

b,N ].

From (54) and (60), the estimates of input and
output noise variances σ2

e and σ2
d can be obtained

by solutions of system of equations

[
1+âT

LS,N âBC,N−1 b̂
T

LS,N b̂BC,N−1

φ̂
T

a,N âBC,N−1 φ̂
T

b,N b̂BC,N−1

][
σ̂2

e

σ̂2
d

]

=
1
N

[
ĝN

ĵN

]
(61)

6.2 Zheng’s BELS method

Define an argumented parameter vector as

θ̄
T =[θT , cT ], cT =[bn+1, bn+2]=0T

2 . (62)

The corresponding auxiliary regression vector is
given by

p̄T
t = [pT

t , xT
t ], xT

t = [wt−n−1, wt−n−2] . (63)

The least-squares estimate of θ̄ is given by

p lim
N→∞

̂̄θLS,N = R−1
p̄p̄ rp̄z (64)

p lim
N→∞

̂̄θLS,N = θ̄ + R−1
p̄p̄ D̄θ̄ (65)

where Rp̄p̄ = E[p̄tp̄
T
t ], rp̄z = E[p̄tzt] and D̄ =

diag{D; σ2
dI2}. Applying the matrix inversion

formula to Rp̄p̄, the last two components of ̂̄θLS,N

may have two expressions. Then the following
expression can be established from (64) and (65)

σ2
eRT

pxR−1
pp,1a + σ2

dRT
pxR−1

pp,2b

= rxz −RT
px p lim

N→∞
θ̂LS,N (66)

where Rpx = E[ptx
T
t ], rxz = E[xtzt]. R−1

pp,1 and
R−1

pp,2 are composed of the first n and the last n

columns of R−1
pp , respectively.

From (54) and (66), the estimates of input and
output noise variances σ2

e and σ2
d can be obtained

by solutions of system of equations

[
1+âT

LS,N âBC,N−1 b̂
T

LS,N b̂BC,N−1

R̂
T

pxR̂
−1

pp,1âBC,N−1 R̂
T

pxR̂
−1

pp,2b̂BC,N−1

][
σ̂2

e

σ̂2
d

]

=

[
ĝN/N

r̂xz − R̂
T

pxθ̂LS,N

]
(67)

Zheng’s BELS method can be extended for colored
output noise (Zheng, 2002).

7. SIMULATION RESULTS

By computer simulation, the proposed BCLS al-
gorithm is compared with Jia et al.’s BCLS algo-
rithm, Zheng’s BELS algorithm and LS algorithm.
Consider the following second-order system:

B(q−1)
A(q−1)

=
0.169901q−1+0.143831q−2

1−1.575157q−1+0.606531q−2
.(68)

The noise free input ut is white signal with vari-
ance σ2

u =1. The noise variance on input side is set
as σ2

d =0.1 which yields SNR=10 log10(σ2
u/σ2

d)=
10 [dB]. The noise variance on output side is set as
σ2

e =0.3987 which yields SNR=10 log10(σ2
y/σ2

e)=
10 [dB]. The filter α(q−1) is designed as l = 3,
α0 =1, α1 =2, α2 =2, α3 =1.

Computer simulation for comparison are carried
out through M = 100 independent runs with a
data length of 4000. Fig. 1 gives a plot of the
RMSE which is defined by

RMSE=20 log10

√√√√ 1
M

M∑

k=1

‖θ̂k,t−θ‖2
‖θ‖2 [dB] (69)

where θ̂k,t denotes the estimate of θ at time step
t in the kth independent run. The mean values of
the estimates of σ2

e and σ2
d are shown in Fig. 2 and

Fig. 3, respectively.

Simulation results indicate that LS method gives
biased results. On the contrary, the proposed
BCLS method, Jia et al.’s method and Zheng’s
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Fig. 1. RMSE of parameter estimates.
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Fig. 2. The mean values of the estimates of σ2
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Fig. 3. The mean values of the estimates of σ2
d.

method can give consistent estimates. Especially,
since the proposed algorithm provides the good
estimates of noise variances σ2

e and σ2
d compared

with Jia et al.’s algorithm and Zheng’s algorithm,
the resulting BCLS estimates are more accurate
than those obtained with Jia et al.’s algorithm
and Zheng’s algorithm.

8. CONCLUSION

In this paper, the method of consistent estimation
of noisy input-output system has been studied. A

new BCLS based algorithm has been proposed by
introducing a generalized least-squares type esti-
mator. Since the proposed approach can give the
good estimates of the noise variances, the estima-
tion accuracy of the resulting BCLS estimates can
be improved. It is demonstrated that the proposed
method can give consistent parameter estimates
via simulation results.
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