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Abstract: In the modelling of systems, it is common to obtain high order mathematical 
models. This can lead to problems in implementation, computing problems or problems in 
the design of the controller. It is thus preferable to obtain reduced models of the system. 
The selection of the most suitable reduced model, with real applications in some cases, 
should not be taken lightly, but rather an exhaustive study should be made of the 
suitability of the model, examining the main characteristics required in each case and 
particularly the controller design techniques to be used. This paper presents a 
methodological proposal for the selection of a reduced model which is applied to the case 
of a TF-120 high-speed craft model. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
In model reduction (of the plant and/or controller) 
the control problem (Skogestad and Postlethwaite, 
1996) is: Given a high order stable linear model 
G(s) time-invariant, find a lower order GR(s) such 
that the norm-∞ of the difference || ( ) - ( ) ||RG s G s ∞  
is small. 
 
Traditionally, the method used to reduce the order 
of the control system was the so-called Dominant 
Pole Approximation. The modern formulation of 
this idea was devised by Davison (1966) in a paper 
in which he described a model reduction technique, 
which consisted in differentiating between the 
dominant and the non-dominant modes of the 
original system in order to discard the latter. 
 
Since then, more interest has been taken in finding 
different techniques for reducing models. Moore 
(1981) introduced the concept of balanced 
realizations. This was a great advance allowing the 
introduction of the so-called balanced truncation 
method for reducing an asymptotically stable linear 
system. Enns (1984) introduced the concept of 
balanced realization with frequency weighting. 

This method consisted in introducing frequencies 
with weights in the balanced truncation procedure. 
Another important advance in the area of model 
reduction came with the article published by 
Glover (1984), which described a new 
characterization of all solutions in state space for 
the problem of the optimal Hankel norm approach 
for linear multivariable continuous systems and 
determined an error bound for the frequency 
response. 
 
Once a reduced order model is obtained for the 
system, it is necessary to check whether its 
behaviour fits the original model and to what 
extent. This paper presents a methodological 
approach to the selection of the most appropriate 
reduced model for the system control under study 
and its application to the selection of a reduced 
model for a TF-120 high-speed craft. 
 
 
2. GENERAL METHOD FOR THE SELECTION 

OF A REDUCED MODEL 
 
In a control system whose mathematical model is 
of a high order, there may arise problems of 
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implementation, computing problems in the 
analysis of the behaviour of the system in response 
to different signals, or problems in the design of the 
controller. Thus, for the stages of analysis, design 
and implementation of the control system, it is a 
great advantage to be able to work with high order 
models with the greatest possible reduction. 
 
The most widely used reduction models are: 
balanced truncation, balanced residualization and 
optimal Hankel norm approach. 
 
The definition of the control problem posed in the 
reduction of a model suggests that the selection of 
the most suitable reduced model should be based 
on the norm-∞ of the error being sufficiently small. 
Moreover, for the Hankel norm approach, a 
reduction is considered good if the Hankel norm of 
the error is small ( || ( ) - ( ) ||R HG s G s ). 
 
The selection of the most suitable reduced model 
can be made by following the steps described 
below: 
 
Step 1. In the reduction techniques mentioned 
above, an error bound is also defined for the 
reduced model obtained. In the first two cases, the 
bound consists in limiting the value of the norm-∞ 
of the error so that it is the same or less than twice 
the sum of the singular Hankel values (σi). In the 
third case, the Hankel norm of the error must be 
equal to the singular Hankel k+1 value, k being the 
order of the reduced model obtained. (See Table 1) 
 

Table 1. Reduced model technique: error bound 
 

 Error bound 
Truncation and  
Residualization 1

( ) -  ( )  2
n

R i
i k

G s G s σ
∞

= +

≤ ∑
Hankel norm 

approach ( ) ( ) 1-  σ +=R kH
G s G s  

 
Step 2. When the order of a system model is 
reduced, it is necessary to maintain all of the 
behaviour characteristics of the original system. A 
dilemma then arises between simplicity and 
accuracy in the model to be used. If the reduced 
model presents any behavioural difference with 
respect to the high order model, the importance of 
this variation must be assessed for each particular 
case. The simplest possible model which is usable 
and which retains the main dynamics of the original 
system must be found. 
 
Hence, in order to select the most suitable model, 
its behaviour must be analysed and compared with 
the original unreduced model and with the real 
system if possible. There are several characteristics 
of the systems which can be used for this purpose 
and which are proposed by this paper to form part 
of the model selection methodology. 
 
It is necessary first to verify and calculate the 
parameters shown in Table 2. 

Table 2. Prior data 
 

 Original 
System 

Reduced 
System 

Transfer function G(s) GR(s) 
Time response c(t) cR(t) 

Module m(ω) mR(ω) Frequency 
response Phase f(ω) fR(ω) 
Energy 

spectrum
Spectral 

momentum MA MAR 

Norm H2 ( )
2

G s  ( )
2RG s  

Norm H∞ ( )G s
∞

 ( )RG s
∞

 System 
norm  

Norm Hankel ( )
H

G s  ( )R H
G s  

Max ( )σ ωS  ( )σ ωSR  Function 
S Min ( )σ ωS  ( )σ ωSR  

Max ( )σ ωT  ( )σ ωTR  Function 
T Min ( )σ ωT  ( )σ ωTR  

Max ( )σ ωST  ( )σ ωSTR  

Singular 
values 

(if MIMO)

Function
S + T Min ( )σ ωST  ( )σ ωSTR  

 
Step 3. One way of analyzing the behaviour of a 
control system is to study the time response 
characteristics (impulse, step), or the frequency 
response characteristics (Bode, Nichols). Since the 
reduced system must contain the main dynamics of 
the original system, the time and frequency 
responses of both systems should be similar as 
possible. Thus, a good indicator of the appropriacy 
of a model could be that the difference between the 
responses of the two systems is as small as 
possible. This can be obtained either by simple 
observation of the graphic representation of the 
response of both systems or by calculating 
analytically the absolute and/or relative error. Since 
the difference depends on the instant of time (time 
response) or the frequency (frequency response), 
the error can be calculated as a geometrical average 
of the difference (norm-2). 
 
If the system is a multivariable control system, it is 
of great interest to know its singular values (main 
gains), and particularly its maximum and minimum 
values (for each frequency) as these limit the area 
in which the system gain will always be found. The 
reduced model must have maximum and minimum 
values very similar to those of the original system. 
It is possible then to calculate, as a measure of the 
appropriacy of the reduced model, the error in the 
singular maximum and minimum values of both 
models in graphic or numerical form. 
 
A system norm also provides important 
information: norm-2 gives an idea as to whether the 
system response for a bound input is also bound, 
and indicates the degree of amplification of this 
input signal as it passes through the system, norm-
∞ indicates the maximum of the input-output 
relation of the system and the Hankel norm 
indicates the maximum singular Hankel value. 
Depending on the type of behaviour to be 

     



prioritised in the system, the selection of the 
reduced model must be conditioned by whether the 
values of the norms H2, H∞ and/or Hankel of both 
systems are as similar as possible. These conditions 
are more restrictive than the definition of the 
reduction problem itself because: 
 

|| ( ) || - || ( ) || || ( ) - ( ) ||p R p RG s G s G s G s p≤  (1) 
 
Another widely used measure in signal analysis is 
the energy spectrum of the signal and the spectral 
momentum, which provide statistical information 
on the behaviour of the signal (Ochi, 1998). The 
signal considered for this study could be, for 
example, the frequency response of both systems 
(original and reduced). The energy spectrum and 
the spectral momentum should be similar. 
 
Table 3 (at the end of this paper) shows all of the 
methods proposed for the selection of the most 
suitable reduced model. The selection must be 
conditioned to the highest priority characteristics in 
each case. For example, if it is important that a 
specific signal should not exceed a certain 
maximum, it is appropriate to prioritise that the 
error in the norm-∞ is as small as possible, rather 
than prioritising the error in norm-2. 
 
Step 4. Another validation method for testing 
whether a signal fits certain criteria is to use 
methods which minimise the norm-2 of the error: 
Akaike information criteria (AIC) and final 
prediction error (FPE). Both values are a function 
of the number of parameters of the model p, the 
data register length N and a loss function V. The V 
function will be the measurement to be considered 
for the selection of the model, such as the norm-2 
of the error in the frequency response of the 
reduced system with respect to the original system 
response. The most suitable model is determined as 
that for which the AIC and FPE values are the 
smallest. Table 4 includes the formulas for 
calculating both indices. 
 

Table 4. Model selection: error indices 
 

Error indices 

21 pAIC ln V
N

  = +    
 

1

1

p
NFPE V
p
N

+
=

−
 

 
 

3. SELECTION METHOD USING CONTROL 
SYSTEM DESIGN TECHNIQUE 

 
As well as the model selection methods described 
up to now, an analysis can also be made of the 
main characteristic points of the control design 
technique to be used. 

For example, in the robust design control 
technique, QFT (Quantitative Feedback Theory), 
developed by Horowitz (1992) for systems with 
uncertainty, the controller tuning is performed by 
adjusting the open loop function: 
 

0( ) ( ) (L j G j P j )ω ω ω=   (2) 
 
where G(jω) is the transfer function of the 
controller and P0(jω) is the transfer function of the 
nominal plant. 
 
This function must be such that it does no violate 
the limits of certain forbidden regions (bounds), 
which are determined by the uncertainty of the 
model and the design specifications. It may be of 
interest then to verify the form and value of the 
restriction curves of the reduced model and to 
compare them with those of the original model. 
 
 

4. APPLICATION OF SELECTION 
METHODOLOGY TO THE MODEL OF THE 

TURBO FERRY TF-120 
 
In the project CICYT TAP97-0607-C03, the 
mathematical model for Turbo Ferry TF-120 
performance for ssn 4 (sea state number) and 
speeds of 20, 30 and 40 knots was obtained. The 
objective of the control design system is to reduce 
the effect of the waves on the vertical movement of 
the craft so that the motion sickness incidence 
(MSI) decreases. 
 
The vertical dynamics of the craft is composed of 
various continuous linear SISO models, which 
were identified from the program PRECAL 
simulated data (De la Cruz, et al., 2004), at a speed 
of 40 knots. A linear model was also developed to 
describe the behaviour of the active actuators (one 
T-foil and two flaps) intended to reduce the vertical 
accelerations and movement, because the actuators 
counteract the effect of the waves. This also 
reduces the MSI, which allows a higher speed to be 
maintained. 
 
Using the rules of block diagram algebra, it has 
been verified that the process model is as shown in 
Figure 1. 
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G12

G11
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Fig. 1. Linearised process model 
 

     



The transfer functions G11, G12, G21, G22 of the 
multivariable 2x2 system of the craft are in the 
order of 17. These values make it desirable to look 
for some lower order model with a dynamic 
performance close to that of the original model to 
facilitate controller design. 
 
Applying balanced truncation techniques, balanced 
residualization and optimal Hankel norm approach, 
several reduced models have been obtained (Rueda, 
2004, Rueda et al., 2004). Among these, two 
options are presented here (model 1 with transfer 
functions of order 4th, and model with transfer 
functions of order 5th, both obtained by 
residualization, for ssn 4 and 40 knots). 
 
Model 1 (order 4th): 
 

( )(
( )( )

)

( )(
( )( )

)

( )( )(

-4 2 2

2 2

-4 2 2

2 2

-4 2

2

28.95*10 s 0.4323 1.36 s 2.143 4.976
 G11=

s 0.4939 1.5 s 0.7928 2.895

-10.406*10 s 0.4981 1.78 s 3.139 10.18
G12=

s 0.4939 1.5 s 0.7928 2.895

-37.66*10 s-1.164 s+0.267 s 1.155 3.201
 G21=

s 0

s s

s s

s s

s s

s

+ + − +

+ + + +

+ + − +

+ + + +

+ +

+( )( )
)

( )( )(
( )(

)
)

2

-4 2

2 2

.4939 1.5 s 0.7928 2.895

-68.787*10 s-1.113 s+0.2294 s 0.6905 2.877
 G22=

s 0.4939 1.5 s 0.7928 2.895

s s

s

s s

+ + +

+ +

+ + + +

 
Model 2 (order 5th): 
 

( )( )(
( )( )( )

( )( )(
( )( )( )

-4 2 2

2 2

-4 2 2

2 2

-

23.75*10 s+0.4213 s 0.9915 2.363 s 2.315 5.691
 G11=

s+0.4182 s 0.9545 2.465 s 0.7915 2.895

-19.073*10 s+0.414 s 0.841 2.57 s 2.503 6.382
G12=

s+0.4182 s 0.9545 2.465 s 0.7915 2.895

17.36*10
 G21=

+ + − +

+ + + +

+ + − +

+ + + +

s s

s s

s s

s s

( )( )(
( )( )(

( )( )(
( )( )( )

4 2 2

2 2

-4 2 2

2 2

s+0.0413 s 0.8921 2.959 s 4.908 12.14

s+0.4182 s 0.9545 2.465 s 0.7915 2.895

23.162*10 s+0.04102 s 0.7589 2.892 s 5.171 12.63
 G22=

s+0.4182 s 0.9545 2.465 s 0.7915 2.895

+ + − +

+ + + +

+ + − +

+ + + +

s s

s s

s s

s s
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In order to analyse their appropriacy, all of the 
values have been calculated using the methodology 
summarised in Tables 3 and 4. Table 5 (bottom in 
the next page) shows some of these. The aim of the 
controller design is to reduce the effect of the 
waves on the movement of the craft, so it is 
especially interesting to verify whether the 
frequency response of the original model and the 
reduced model are similar, since the system input 
signal depends on the frequency. Moreover, if the 
vertical movement of the craft is to be reduced in a 
measured way, it is also important to observe the 
differences in the H2 norm. The error is verified in 
the singular maximum and minimum values 
because it is a multivariable system. Finally, the 
Akaike information criterion is included for norm-2 
of the frequency response of the system. 
 
In view of the data obtained, either of the two 
models could be suitable, since the error is small in 
both cases. Model 1 could be chosen as it is of a 
lower order, which facilitates its implementation 

and simulation, and reduces the complexity of the 
control system design. 
 
However, the appropriacy of both models in the 
feedback system must be verified if this varies 
according to the control design technique to be 
used, in this case QFT. The aim of the design is to 
reduce the system sensitivity to waves, to minimize 
the control effort of ship actuators and to obtain 
robust stability. In both model 1 and model 2 there 
is uncertainty in the system parameters, whose 
values depend on whether the ship’s speed is 20, 30 
or 40 knots. The nominal plant chosen for the 
design was the one corresponding to 40 knots. 
Bearing in mind that MSI has a maximum for 
frequencies close to 1 rad/sec (Lloyd, 1989) the 
following set of frequencies have been used for the 
design: { }0.7,0.85,1,1.2,1.5,2,2.5,3,7 / secradΩ = . 
 
Figures 2, 3 and 4 show the bounds, which are not 
to be violated by the unreduced system, and those 
for both reduced models. It can be observed that 
although model 1 looks adequate, the regions 
limited by the bounds differ more than those of the 
unreduced model than those of model 2. Thus, if 
the QFT design technique is to be used, it is better 
to select model 2, because the controller adjusted 
using this model is a priori a good design also for 
the original system, as has been shown in Velasco, 
et al. (2004). 
 

 
Fig 2. Bounds of unreduced model 
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Fig 3. Bounds of model 1 (order 4th) 
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Fig 4. Bounds of model 2 (order 5th) 
 
 

5. CONCLUSIONS 
 
This paper has described a systematic review of the 
general methods for the selection of a reduced 
model with behaviour sufficiently similar to that of 
the original system. 
 
Similarly, it is suggested that the appropriacy of the 
reduced model in the closed loop feedback system 
should be verified according to the design 
technique to be used. 
 
This methodology is applied systematically for a 
study case, the model reduction for a TF-120 high-
speed craft. A QFT controller is sought to minimise 
the effects of the waves on the craft in order to 
reduce the vertical acceleration and the sickness 
index of passengers and crew. 
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Table 5. Sample of reduced model selection 

 

   MODEL 1 (order 4th) MODEL 2 (order 5th) 
   Mean error Mean error 

G11 2.6476 G21 5.0098 G11 3.0710 G21 1.0301 Frequency 
response 

(ω  = [0.9, 1.5] 
rad/sec) 

Distance 
(Nichols) G12 5.5812 G22 5.0800 G12 2.7750 G22 0.8777 

   Relative Error Relative Error  

Higher 0.0000 0.0000 Singular 
values 

(ω  = [0.1, 10] 
rad/sec) 

Function S 
Lower 0.0000 0.0000 

System Norm H2 9.2993% 14.5140% 
   Absolute Error Absolute Error  

G11 1.9545 G21 2.5922 G11 2.2206 G21 1.1282 
Error Indices AIC 

Norm-2 of 
error 

(Nichols) G12 2.7002 G22 2.6061 G12 2.1192 G22 0.9682 

     



 
Table 3. Model Selection Methodology 

 

Selection methodology Absolute Error Geometrical average of 
error Relative error 

Time response ( ) ( ) ( )Re t c t c t= −  ( ) ( )
2abse t e t=  ( )

( )
( )

2

2

rel

e t
e t

y t
=  

Module ( ) ( ) ( )Rem m mω ω ω= −  ( ) ( )
2absem emω ω=  ( )

( )
( )

2

2

rel

em
em

m

ω
ω

ω
=  

Phase ( ) ( ) ( )Ref f fω ω ω= −  ( ) ( )
2absef efω ω=  ( )

( )
( )

2

2

rel

ef
ef

f

ω
ω

ω
=  Frequency 

response 

Distance 
(Nichols) ( ) ( ) ( )2 2ed em efω ω ω= + ( ) ( )

2absed edω ω=   

Max ( ) ( ) ( ) ( )
RS SSeσ ω σ ω σ ω= −  ( ) ( ) ( ) ( )

2
absS Se eσ σω ω=  

( ) ( )
( ) ( )

( )
2

2

S

relS
S

e
e

σ

σ

ω
ω

σ ω
=  

Function 
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Min ( ) ( ) ( ) ( )
RS SSeσ ω σ ω σ ω= −  ( ) ( ) ( ) ( )

2absS Se eσ σω ω=  
( ) ( )

( ) ( )
( )

2

2

S

relS
S

e
e

σ

σ

ω
ω

σ ω
=  

Max ( ) ( ) ( ) ( )
RT TTeσ ω σ ω σ ω= −  ( ) ( ) ( ) ( )

2
absT Te eσ σω ω=  

( ) ( )
( ) ( )

( )
2

2

T

relT
T

e
e

σ

σ

ω
ω

σ ω
=  

Function 
T 

Min ( ) ( ) ( ) ( )
RT TTeσ ω σ ω σ ω= −  ( ) ( ) ( ) ( )

2absT Te eσ σω ω=  
( ) ( )

( ) ( )
( )

2

2

T

relT
T

e
e

σ

σ

ω
ω

σ ω
=  

Max ( ) ( ) ( ) ( )
RST STSTeσ ω σ ω σ ω= − ( ) ( ) ( ) ( )

2
absST STe eσ σω ω=  

( ) ( )
( ) ( )

( )
2

2

ST

relST
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e
e

σ

σ

ω
ω

σ ω
=

Singular 
values 

(if MIMO) 

Function 
S + T 

Min ( ) ( ) ( ) ( )
RST STSTeσ ω σ ω σ ω= − ( ) ( ) ( ) ( )

2absST STe eσ σω ω=  
( ) ( )

( ) ( )
( )

2

2

ST

relST
ST

e
e

σ

σ

ω
ω

σ ω
=

Norm H2 ( ) ( ) ( )
2 2 2Rn He G s G s= −   ( )

( )

( )
2

2

2

n H
rel n H

e
e

G s
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Norm H∞ ( ) ( ) ( )Rn He G s G s
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e

G s
∞

∞

∞
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