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Abstract: In this paper, a nonlinear modelling framework ispresented that combines
symbolic modelling and linear fractional transformation (LFT) techniques to obtain a
nonlinear symbolic LFT representation. This modelling approach presents three clear
advantages: (i) it provides a unifying framework for the different models that stem from
the same nonlinear system, (ii) it allows for a highly structured representation of the
various nonlinearities present in the system, and (iii) it is closely connected with other
analysis and synthesis frameworks such as linear and linearparameter varying robust
control and nonlinear systems analysis via describing functions.Copyrightc©2005 IFAC
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1. INTRODUCTION

The development of mathematical models of indus-
trial systems is a vital but increasingly time consuming
and expensive task. Often, completely different model
representations are generated for the same system de-
pending on the intended use of the model, i.e. for
simulation, analysis or design. The problem of ensur-
ing consistency, continuity and connectedness across a
range of different models is therefore critical in order
to efficiently validate analysis results and controller
designs, arising from the use of simpler models, in full
nonlinear simulation.

Over the last twenty years, a paradigm shift in the
modelling of dynamic systems has occurred with the
introduction of modern robust control theory and its
associated modelling framework, the linear fractional
transformation (Packard, A. and Doyle, J., 1993).
Commonly, LFTs are used to represent a nonlinear
system as an approximated linear system together with
a structured matrix containing the uncertainty present
in the system. The structured singular value theory,
and its associated software and toolboxes, provides
further incentive for the use of LFT models as it allows
the designer to analyze (and design for) robust stabil-
ity and performance of uncertain linear systems in this
form (Packard, A. and Doyle, J., 1993; Balas, G.J.et
al., 1998). This restriction to linear systems, however,
means that although LFT models easily allow for ro-
bust design and analysis, it is still necessary to use
high-fidelity nonlinear simulation models for the final

validation of the closed-loop prior to real testing and
implementation.

More recently, with the development of powerful real-
time processors and more mature mathematical con-
trol theories, many industries are making significant
efforts to develop and apply nonlinear synthesis and
analysis techniques - see for example, the work re-
ported in (Fielding, C.et al., 2002) for recent progress
in the aerospace industry. One approach to this prob-
lem which has been very successful in practice is to
extend traditional linear design and analysis methods
to address nonlinear problems. This is the basis of
modern synthesis and analysis techniques such as gain
scheduling (Leith, D.J. and Leithead, W.E., 2000), lin-
ear parameter varying (LPV) control (Becker, G. and
Packard, A, 1994), and integral quadratic constraints
(IQC) (Megretski, A. and Rantzer, A., 1995) amongst
others. It is noted that many of these techniques work,
in one form or another, with LFT models.

The main contribution of this paper is a nonlinear
modelling framework that combines symbolic mod-
elling and linear fractional transformation techniques
to obtain a nonlinear symbolic LFT representation.
The proposed nonlinear symbolic LFT approach has
three main advantages. Firstly, it provides a unify-
ing framework for the different models that stem
from the same nonlinear system, and thus improves
consistency, continuity and connectedness between
these various models. Secondly, it results in a highly
structured representation of the different nonlinearities
present in the system, thus facilitating their study and



ameliorating the effect that inappropriate simplifica-
tions and approximations have on the overall mod-
elling process. Thirdly, it is easily connected with
other analysis and synthesis frameworks. Indeed, it
will be shown that the proposed nonlinear symbolic
LFT framework includes as special cases the stan-
dard linear, LPV and nonlinear (via describing func-
tions) design and analysis frameworks. Finally, it is
noted that the nonlinear symbolic LFT itself is directly
amenable to nonlinear extensions ofµ-analysis and
other robustness analysis techniques (Doyle, J. and
Packard, A., 1987; Packard, A. and Doyle, J., 1993).

2. SYMBOLIC NONLINEAR LFT MODELLING
FRAMEWORK

In this section, the class of nonlinear systems con-
sidered and the proposed symbolic LFT modelling
methodology are presented.

2.1 Nonlinear System Class

The class of nonlinear systems considered is de-
fined by the following ordinary differential equations
(ODE) where the statesx, outputsy and inputsu de-
pend on time but the dependency is removed for ease
of presentation:

ẋ = f (x,u) = f1(x) x+ f2(x) u+ f3(x) (1)
y = g(x,u) = g1(x) x+g2(x) u+g3(x) (2)

The first-order derivative condition for the states is
without loss of generality as higher-order derivatives
can be substituted by new state variable definitions
that transform the higher-order system into a first-
order ODE. It is assumed that the nonlinear functions
fi(x),gi(x) are a polynomial mix of analytic expres-
sions and tabular data that arise from first-principles
modelling (e.g. Newton laws of motion, mass-moment
conservation, etc).

The main structural restriction for this class of systems
is the linear dependency of the nonlinear functions
on the input vectoru, e.g. f (x,u) is a function of
f1(x)x, f2(x)u and f3(x). This assumption is indeed
quite general and standard for mechanical systems,
nevertheless an extension to systems with nonlinear
dependency on the inputs is also given in Section
4.3. The inclusion of the functionsf3(x),g3(x) which
represent those terms (nonlinear, time-varying or con-
stant) that cannot be represented as linear in the states,
significantly expands the set of nonlinear systems that
can be considered. For example, these extra functions
often arise in aerospace systems, where their consid-
eration is critical (Stevens, B. and Lewis, F., 1992).

The standard representation of a system for modern
control design and analysis is based on the state-space
2×2 block format:

[

ẋ
y

]

=

[

A B
C D

]

[

x
u

]

(3)

The outputs are the first-order derivatives of the states
ẋ and the sensed signalsy; the inputs are the statex and
the control inputu vectors. The system(A,B,C,D) is
only restricted to be affine on the input vectors[x u]⊤.

In order to write equations (1) and (2), in the standard
representation given by (3), a fictitious constant signal
uf is introduced:

ẋ = f (x,u) = f1(x) x+ f2(x) u+ f3(x) uf (4)
y = g(x,u) = g1(x) x+g2(x) u+g3(x) uf (5)

uf = 1 ∀ t (6)

The nonlinear state-space system in 2×2 block format
is then:

[

ẋ
y

]

=

[

f1(x) f2(x) f3(x)
g1(x) g2(x) g3(x)

]

[

x
u
uf

]

(7)

At this stage, the modelling engineer will try to sim-
plify and/or linearize the nonlinear model for ease of
manipulation while maintaining a minimum required
level of fidelity with respect to the true nonlinear sys-
tem. Managing the trade-off between these conflicting
objectives is usually a very costly and lengthy task
based on the perceived requirements on the model
arising from its final use, i.e. analysis and/or design
based on a specific technique.

2.2 Nonlinear Symbolic LFT

In order to better manage the trade-off between mod-
elling simplicity and system fidelity, the proposed
methodology uses a linear fractional transformation
(LFT) framework.

The proposed method declares as symbolic parameters
ρk all those terms that are nonlinear or time-varying in
nature (e.g. trigonometric relationships, tabular data,
exponential terms) as well as those physical parame-
ters that can vary with time and/or operational condi-
tion (e.g. for an aircraft these might be mass, center of
gravity, etc). Indeed, the guiding principle proposed
at this stage of model development isto select every-
thing that is not a known constant cj as a symbolic
parameterρk (including the number of repetitions
n1,n2, . . . ,nk):

fi(x) = fi(ρn1
1 ,ρn2

2 , . . . ,ρnk
k ,c1,c2, . . . ,c j) (8)

After the symbolic parameter declaration, the result-
ing symbolic nonlinear equations can be arranged in
the nonlinear state-space system format of equation
(7). Due to the symbolic declaration, the state-space
system becomes a multivariate symbolic polynomial
matrix.

Recently, algorithmic implementations have appeared
(Magni, J.F., 2004; Marcos, A.et al., 2005), of the
structured-tree decomposition (Cockburn, J.C. and
Morton, B.G., 1997) and the Horner-tree decompo-
sition (Marcos, A.et al., 2005) respectively. These
order-reduction techniques transform a symbolic mul-
tivariate polynomial matrix into a close-to-minimal
equivalent system by performing matrix factorizations
and sum decompositions (minimal representations are
in general very difficult to obtain except for some sim-
ple cases). This lower-order system can be represented
as an LFT which separates the constant terms from
the symbolic parameters in two different matrices: a
varying matrix∆(ρ), containing the possibly nonlin-
ear, time-varying and uncertain symbolic parameters,
and a constant matrixM, containing the symbolic con-
stants and the linear feedback interconnection infor-
mation, see Figure 1.
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Fig. 1. Nonlinear symbolic LFT -Fu(M,∆(ρ)).

In the course of this symbolic LFT process, the matrix
∆(ρ) acquires a diagonal structure, following the well-
known fact that uncertainty at component level be-
comes structured uncertainty at system level (Packard,
A. and Doyle, J., 1993), ‘uncertainty’ signifying in
this case symbolic parameterization. The parameters
are repeatedn1,n2, . . . ,nk times depending on their
“presence” degree, position (numerator vs denomina-
tor) and operation performed (sum or product) in the
original nonlinear functions. Note, that the approach
results in an LFT representation which is identical to
the original nonlinear system given by equations (1-2).

3. FURTHER MANIPULATIONS OF THE
NONLINEAR SYMBOLIC LFT

An advantage of the proposed modelling approach is
that it results in a structured representation of the non-
linearities, which facilitates their analysis and amelio-
rates the effect that inappropriate simplifications and
approximations have on the overall modelling process.
This advantage arises due to the LFT nature of the
framework together with the diagonal structure of the
symbolic nonlinearities in∆(ρ).

The LFT nature of the framework presents a direct
way to substitute symbolic nonlinear parameters by
their approximations, since the latter can also gener-
ally be represented in LFT form, and the interconnec-
tion of LFTs yield another LFT. On the other hand, the
diagonal representation of the nonlinearities provides
a clearer understanding of the effects each nonlinearity
has on the performance and robustness of the non-
linear system. Furthermore, the combination of the
diagonal representation of the nonlinearities and the
LFT nature of the approach provides modelling modu-
larity which reduces the effect modelling mistakes and
misjudgements can have on the modelling process.
These three characteristics (diagonality, LFT nature
and modularity) can be exploited to further manipu-
late the symbolic nonlinear LFT in order to simplify,
reduce and/or approximate the nonlinear, time-varying
and uncertain terms represented by the symbolic para-
meters.

In order to exploit the above advantages, four ad-
ditional modelling stages in the nonlinear symbolic
LFT approach are proposed: simplification, reduction,
approximation, and uncertainty characterization. At
each of these stages, new constantMi and varying
∆(ρ)i matrices (withi = 1,2, . . . p) are obtained, and
the number of independent symbolic parameters is
reduced. Note, however, that the resulting LFT model
is still a symbolicnonlinearmodel (specifically, note
that ‘approximation’ in this context does not corre-
spond to ‘linearization’).

1) Simplifying assumptionscan be based on knowl-
edge about the physical system (e.g. mass in an air-
craft can be considered constant for a relatively short
period of time) and established approximations (e.g.

small angle assumption). The diagonal structure of
∆(ρ) greatly facilitates this task by allowing direct and
independent (from the other parameters) operations
on the LFT. A great advantage of LFT manipulation
is that algebraic operations such as series and paral-
lel connections preserve the structure, see references
(Packard, A. and Doyle, J., 1993). Furthermore, im-
plementation of these operations has recently been
simplified by the appearance of an LFT MATLAB
toolbox (Magni, J.F., 2004).

2) Model reductiontechniques such as singular value
decomposition, balanced truncation and sensitivity
analysis can also be used to identify and remove neg-
ligible symbolic parameters. As the physical nature of
the parameters is kept intact in the previous stages, it
is more meaningful to reduce the model at this stage.
The removal of a symbolic parameter involves only
a simple row and column cancelation on the constant
matrix M and a corresponding reduction in the order
of the varying matrix∆(ρ) (equivalent to the number
of repetitions for that parameter).

3) Approximation techniquescan be used next in or-
der to further simplify the model. Typically, most of
the nonlinear, varying and uncertain parameters de-
pend on a subset of the system parameters. For exam-
ple, in the case of an aircraft, almost all of the nonlin-
ear tabular data used to represent the aerodynamic sta-
bility derivatives depends only on a handful of the sys-
tem states (e.g. angle of attack, sideslip, altitude, Mach
number). This primogenial dependency can be used
to approximate the symbolic parameters and reduce
the total number of independent parameters (although
it would typically lead to a larger dimension of the
resulting varying∆(ρ)). Some of the approximation
techniques that can be used include: polynomial and
surface fitting (Spillman, M.et al., 1996), trend and
band algorithms (Mannchen, T.et al., 2002), and ra-
tional approximations (Hansson, J., 2003). It is noted
again, that these approximation techniques will still,
if desired, maintain the nonlinear nature of the LFT
model (e.g polynomial fits based on parameters with
high orders).

Once a parameter in∆(ρ) is approximated by a new
symbolic expression, this new expression can be di-
rectly substituted into the nonlinear symbolic LFT.
More importantly, the approximation can also be ex-
pressed in LFT form and then substituted in the orig-
inal LFT model to obtain a new LFT where all the
nonlinearities and varying parameters are in∆(ρ) and
the constants and linear terms inM by means of the
following result:

Lemma 1.Consider a lower LFTy= Fl (M,∆(ρ))u as
shown in Figure 2 (a). Assumew1 = ∆1(ρ)z1 can be
represented as another LFT,∆1(ρ) = Fl (M∆1, ∆̄1) as
shown in Figure 2 (b).
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Fig. 2. Nested LFT: initial lower LFTs.

Thenested substitutionof the lower LFT correspond-
ing to ∆1(ρ) into Fl (M,∆(ρ)) yields another lower



LFT Fl (M̄, ∆̄) with:

∆̄ =

[

∆̄1 0
0 ∆2(ρ)

]

(9)

M̄ =

[

Fl (M,M̄∆
11) M12(I − M̄∆

11M22)
−1M̄∆

12

M̄∆
21(I −M22M̄

∆
11)

−1M21 Fu(M̄
∆,M22)

]

(10)

M̄∆ =

[

M̄∆
11 M̄∆

12

M̄∆
21 M̄∆

22

]

=

[

0dim(w)×dim(z) Idim(w)×dim(w̄1+w2)

Idim(z̄1+z2)×dim(z) 0dim(z̄1+z2)×dim(w̄1+w2)

]

(11)

whereM̄∆ is composed of zero and identity matrices
with elementsM̄∆

11(ii , ii) = M∆1
11, M̄∆

12(ii , ii) = M∆1
12,

M̄∆
21(ii , ii) = M∆1

21, M̄∆
22(ii , ii) = M∆1

22. The index(ii , ii)
is given by the position of∆1(ρ) in ∆(ρ). ⊲⊳

Clearly, a similar result to the above can also be de-
rived for upper LFT representations. It is important
to note that the order of the new LFT is equal to the
sum of the orders corresponding tō∆1 and ∆2. The
nested substitution, see Figure 3, can be automated,
and due to the diagonal structure of the original non-
linear LFT, updated or corrected approximations can
be implemented without affecting the other approxi-
mations (thus reducing the impact, in terms of time
and effort, an inappropriate approximation would have
in the overall modelling process).
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Fig. 3. Nested linear fractional transformations.

4) Uncertainty characterization. As a result of the ap-
proximations and/or simplifications described above,
it might be desirable to include additional structured
or unstructured uncertainty to represent the errors in-
troduced in these stages. The most common structured
uncertainty representation for parametric models is the
so-called additive uncertainty, i.e.ρ = ρ + δ where
the uncertain parameterδ provides a bound on the
maximum expected level of uncertainty. Suchδs can
also be declared as symbolic parameters under this
modelling framework. The inclusion of these additive
uncertain terms can be carried out initially from equa-
tions (7-8), or more appropriately, after the approx-
imation stage by using the nested LFT substitution.
Note that the addition of uncertain terms and the sub-
sequent re-arrangement of theM and ∆(ρ,δ) matri-
ces is direct. Other structured uncertainty descriptions
(multiplicative, divisive) are also possible as they enter
the system in polynomial form. Unstructured uncer-
tainty, which is typically used to characterized ne-
glected high-order dynamics, could also be included,
for examplein lieu of some of the nonlinear terms
in equation (7), e.g.f3(x) could be covered by one
unstructured|∆3| < α.

4. CONNECTIONS WITH OTHER MODELLING
FRAMEWORKS FOR ANALYSIS AND DESIGN

One important advantage of the proposed modelling
approach is that it is easily connected with other
analysis and synthesis frameworks. These connections
are fundamental for the usefulness of the proposed
approach, as they allow the use of established design
and analysis techniques on models stemming from
the original nonlinear symbolic LFT. As these models
are particular cases of the nonlinear symbolic LFT
model, which exactly represents the true nonlinear
system, there is also greater connectedness, continuity
and consistency between the different models. Due
to space restrictions, connections with standard linear
theory are discussed in detail and those with LPV and
nonlinear frameworks only briefly.

4.1 Extension to Linear Theory

In order to use linear analysis and design techniques
a linear time invariant (LTI) model of the closed-
loop system has to be obtained. This LTI system
is obtained from the nonlinear system by applying
small-perturbation theory and first-order Taylor ap-
proximations with respect to an equilibrium point in a
process known as linearization. During the lineariza-
tion process, the termsf3(x) andg3(x) from the non-
linear system are embedded in the linear system as
terms affine on the deviation statesσx, i.e. f3(x) ≈
∂ f3(x)

∂x

∣

∣

∣

eq
σx.

The standard linear time invariant LFT modelling ap-
proach is based on the technique known as uncer-
tainty “pull-out” whereby the uncertain parameters
in the linear plant and/or linear interconnection are
placed in the uncertain matrix∆. Several approaches
can be used to obtain the uncertain parameterized
LTI LFT model, see (Varga, A.et al., 1998; Bates,
D. and Postlethwaite, I., 2002) for a review. One of
the first approaches to use symbolic LFT modelling
for linear systems was proposed in (Varga, A.et
al., 1998; Varga, A. and Looye, G., 1999). These two
references propose a two-step modelling approach for
the nonlinear system given by equations (4-6). The
first step is either to represent numerical LTI state-
space matrices as symbolically parameterized poly-
nomials, or alternatively to symbolically linearize the
nonlinear system with respect to a generic equilibrium
point. Note that by virtue of the linearization process
(either symbolic or numerical), the termsf3(x) and
g3(x) become linear on the deviation states, and the
matricesA,B,C,D are parameterized in the selected
symbolic parameters, thus a symbolic linear state-
space system in the form of equation (3) is obtained.
The second step is to use LFT techniques to “pull out”
the symbolic parameters into the matrix∆.

The proposed nonlinear modelling methodology builds
on the previous linear symbolic LFT approach of ref-
erences (Varga, A.et al., 1998; Varga, A. and Looye,
G., 1999). The difference between the approach pro-
posed in this paper and the linear symbolic LFT ap-
proach is primarily due to the inversion in the order of
the steps, which changes the nature of the state-space
representation, and the subsequent manipulations on
the resulting symbolic LFT. The proposed approach is
valid for nonlinear state-space systems, see equation
(7), and results in a nonlinear symbolic LFT as op-
posed to a linear symbolic LFT. As mentioned before,



the use of nonlinear symbolic LFTs has several im-
portant advantages which are not present in the linear
symbolic LFT approach.

A direct connection of the proposed framework to the
linear symbolic LFT modelling approach and hence to
linear design/analysis theory is obtained by construct-
ing the nonlinear symbolic LFT model as proposed
and subsequently performing a symbolic Jacobian lin-
earization on the final matrix∆(ρ)p in order to obtain
the linear symbolic LFT model. The following result
on symbolic LFT linearization provides a simple and
easily automated way to perform this connection (a
similar result can be derived for upper LFTs):

Lemma 2.Consider a symbolic well-posed lower LFT
y = Fl (M,∆)u whereM = [M11 M12;M21 M22], ∆ =
diag(∆1,∆2(ρ)) andu = [ρ d]⊤.
Its symbolic lower LFT linearization, see Figure 4,
is given byσy = Fl (M̄,∆J)σu whereσy,σu are devi-
ation variables with respect to an equilibrium point
(yeq,ueq), e.g.σy = y− yeq; the coefficient matrixM̄
is given by:

M̄ =

[

M11+M12M
J
11 M12M

J
12

MJ
21 MJ

22

]

(12)

σ

22

M12

M21
z
_

w
_

M11

∆J

y u__ __

____

σ

M

Fig. 4. Symbolic linearized LFT.

andMJ = [MJ
11 MJ

12;M
J
21 MJ

22] and∆J are respectively
the coefficient and uncertain matrices from the lower
LFT of L = Fl (MJ,∆J):

L =
∂
(

(I −∆M22)
−1∆M21u

)

∂u

∣

∣

∣

eq
(13)

∆J is obtained by selecting as symbolic variables the
terms∆1|eq, ∆2(ρ)|eq, ueq and the symbolic derivative
∂∆2(ρ)

∂u

∣

∣

∣

eq
for the LFT of the functionL. ⊲⊳

In order to use linear analysis and design techniques
the analytical form of the linear symbolic LFT must be
used. As the symbolic parameters are either parame-
terized by or independent of the general equilibrium
point (yeq,ueq), a simple substitution of the chosen
analytic equilibrium point suffices to find the analytic
linear system model.

Finally, note that in order to apply robust linear analy-
sis and synthesis techniques based onH∞/µ theory, it
is required that the matrix∆ is norm-bounded by a
positive non-zero value. Typically, the bound is set to
one by scaling the constant and uncertain matrices in
the LFT form in a process known as normalization.
It is recommended that the symbolic parameters are
normalized only after all other manipulations have
been performed on the symbolic LFT (nonlinear or
linear). By performing the normalization last (espe-
cially for the nonlinear symbolic LFT), it is ensured
that the physical meaning of the symbolic parameters
is retained and hence their effects on the system re-
main easier to understand and study. Furthermore, the

diagonal structure of the∆ matrix means that the order
of the LFT remains the same after normalization - see
(Marcos, A.et al., 2004) for a flight dynamics example
of the dramatic effect normalization of the parameters
before the LFT process has on the overall LFT order.
This problem has been mentioned before, (Cockburn,
J.C. and Morton, B.G., 1997; Magni, J.F., 2004), but it
is noted that most of the available applications in the
literature do not follow the advice contained in these
references.

4.2 Extension to LPV Theory

A linear parameter varying system is defined as the
class of finite dimensional linear systems whose state-
space entries depend continuously on a time-varying
parameter vectorθ(t):

[

ẋ(t)

y(t)

]

=

[

A(θ(t)) B(θ(t))

C(θ(t)) D(θ(t))

][

x(t)

u(t)

]

(14)

The trajectory of the scheduling variablesθ(t) is as-
sumed not to be known in advance, although its value
can be accessed (measured) in real time and is con-
straineda priori to lie in a specified bounded set.
The scheduling variables can be considered as sym-
bolic parameters,ρ = θ(t), in the proposed modelling
framework without loss of generality.

Note that there is no restriction on the nonlinearity of
the scheduling variables within the system matrices. If
they enter linearly, a standard linear symbolic LFT can
be obtained where the varying matrix∆ contains the
symbolic parameters -this is the standard LFT form of
a LPV system. If they enter nonlinearly, a symbolic
nonlinear state-space in the form of equation (7) is
obtained and the proposed modelling framework can
be applied. This technique, including the definition of
the fictitious input channeluf , has been used for an
aircraft application of the geometric LPV approach for
filter detection design in (Szászi, I.et al., 2002).

4.3 Extension to Describing Function Theory

Describing functions (DF) are a powerful mathemati-
cal tool for the design and analysis of nonlinear sys-
tems (Taylor, J.H., 1999). The basic idea of DFs is
to replace each nonlinear element with a quasi-linear
approximation based on harmonic linearization, which
typically give rise to sinusoidal-input describing func-
tions (SIDF). The main advantage of the SIDF ap-
proach is that it allows stability analysis of linear sys-
tems with nonlinear inputs or outputs, e.g. saturation
of the control signals.

In references (Katebi, M.R. and Zhang, Y., 1995; Fer-
reres, G. and Fromion, V., 1998), it is shown how the
DF approach can be used to transform a linear system
with a nonlinear input into an LFT model by using
the approximation error of the harmonic linearization
and the corresponding SIDF for the nonlinearity. Fur-
thermore, these two references present methods for
performing nonlinear analysis, i.e. checking for the
presence or absence of limit cycles, based on the use
of µ theory -which depends on LFT models.

Hence, the class of nonlinear system considered ear-
lier in equations (1-2) can also be extended to those



nonlinear systems where the input enters in a nonlin-
ear manner. The same symbolic nonlinear LFT mod-
elling process is applied except that the nonlinear in-
put is represented by a symbolic nonlinearity affine on
a linear input signal, e.g.nl(u) = ρnlu. At the approx-
imation stage in Section 3, the symbolic nonlinearity
can be substituted in the varying matrix∆ by its SIDF
and associated error, which can be regarded as an extra
uncertain parameter. This enables the application of
robust nonlinear analysis and design techniques to the
resulting LFT model, using a combination of describ-
ing function methods and robust control theory.

5. CONCLUSIONS

In this paper a framework for exact nonlinear mod-
elling has been presented. It relies on the use of
symbolic parameterization and linear fractional trans-
formations. The resulting nonlinear symbolic LFT is
made up of a constant matrix connected in linear feed-
back with a structured matrix containing all the non-
linear, varying and uncertain terms. This structured
presentation of the nonlinearities facilitates their study
and ameliorates the effect that inappropriate simplifi-
cations and approximations could have on the overall
modelling process. The nonlinear modelling frame-
work also improves consistency, continuity and con-
nectedness among the different models that stem from
the nonlinear system. Finally, it has been shown that
the proposed modelling framework is easily connected
with several other analysis and synthesis frameworks,
including linear robust control, LPV control and non-
linear describing function theories.
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