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Abstract: Robust stability and performance of an induction machine controlled with 
Indirect Self Control (ISC) are examined through µ-analysis. The analysis indicates poor 
robust performance at higher rotor speeds. Using reasonable parameter deviations 
between plant and controller, the predicted bad performance is however hard to verify 
through simulations. The tested parameter variations seem not to generate the worst case 
model errors. In simulations, the ISC therefore outperforms linear controllers optimized 
with respect to the robust performance criterion (at dispense of nominal performance). 
The large predicted sensitivity to model errors however explains the large impact on 
performance due to seemingly small differences in the implementation of the ISC control. 
Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Field-oriented controllers (FOC) are frequently used 
non-linear controllers for induction machines. The 
idea with field-orientation was originally to mimic 
control of DC-machines for induction motors. It has 
later been shown that the classical field-oriented 
controller actually performs asymptotic linearization 
and decoupling (Marino, et al., 1993). Stability of 
FOC has been investigated for example in (De Wit et 
al., 1995) and (Bazanella and Reginatto, 2002), 
where focus is on robustness regarding errors in the 
estimate of the rotor resistance. 
 
A different class of controllers for induction 
machines is formed by the so called Direct Torque 
Control (DTC) techniques; see (Buja and 
Kazmierkowski, 2004) for an overview. One method 
within this family, which is run at constant switching 
frequency, is the Indirect Self Control (ISC). With 
ISC, torque and stator flux magnitude are controlled 
by PI controllers in closed-loop, see (Jänecke et al., 
1989) and (Maischak, 1995). The linearized closed-
loop dynamics of an induction motor drive using ISC 
was examined in (Mosskull, 2002), where also 

tuning rules for the controller parameters were given 
to achieve desired bandwidth and stability margins. 
The robustness analysis was, however, performed 
under the simplifying assumption of perfect 
knowledge of parameters, for example used for stator 
flux estimation. One way to include flux estimation 
in the robustness analysis of the closed loop drive is 
to apply µ-analysis, as in done for FOC in (Thomas, 
1993). As the analysis is still performed on linear 
models (as opposed to the work in (De Wit et al., 
1995) and (Bazanella and Reginatto, 2002)), the 
results may only be valid for small perturbations 
around an operating point. On the other hand, not 
only robustness in terms of stability but also robust 
performance can be considered. To further evaluate 
the ISC, µ-synthesis controllers are designed for 
some fixed operating points and the performance is 
compared to that of the ISC. 
 
 

2. INDUCTION MACHINE 
 
The induction machine can be described by the 
following set of complex-valued space vector 



 

     

equations, where space vectors are indicated by 
superscripts s, (Steimel, 2000): 

 ( ) ( ) ( )s s s
s s st R i t u tµψ = − +  (1) 

 ( ) ( ) ( ) ( )s s sr r
r p m r

R R
t t jn t t

L Lµ
σ σ

ψ ψ ω ψ
 

= + − 
 

 (2) 

Here ψµ(t) and ψr(t) represent the stator and rotor 
fluxes, respectively, and ωm(t) is the mechanical 
rotor speed. The number of pole pairs of the 
induction machine is denoted by np, whereas Rs and 
Rr stand for the resistance in the stator and rotor 
windings. Finally, the machine inductances are 
denoted Lµ and Lσ. This representation, where all 
leakage inductance is put in the rotor mesh, is called 
the Γ-model and can be visualized by the equivalent 
circuit diagram (ECD) shown in Fig. 1. 
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Fig. 1. Induction machine Γ-ECD. 

Using a polar notation with magnitudes and angles 
for the fluxes, i.e. 

 ( ) ( ) ( ) ( ) ( ) ( ), rj t j ts s
r rt m t e t m t eµχ χ

µ µψ ψ= =  (3) 

the electrical torque can be expressed as, (Steimel, 
2000), 

 ( ) ( ) ( ) ( )( )3
sin

2
p

r r

n
T m t m t t t

L µ µ
σ

χ χ= −  (4) 

 
 

3. INPUT CONSTRAINTS 
 
Modern drives often use voltage source inverters to 
feed the induction machines. The inverter converts a 
DC-voltage, denoted Ud, to three AC stator voltages 
with variable frequency and amplitude. The 
fundamentals of the stator voltages are upper limited 
by, (Kovacs, 1984), 

 ( ) ( ) 2s
u s dm t u t U

π
≤  (5) 

This is a constraint on the stator voltage amplitudes, 
but one should also put restrictions on the stator 
voltage frequency to prevent the steady state slip 
frequency, ωslip

0, from exceeding the pull-out slip 
frequency (Steimel, 2000), i.e. 

 0 0 0 1
slip u p mn

Tσ

ω ω ω= − ≤  (6) 

Here the stator frequency, ωu(t), is the time 
derivative of the angle of the stator voltage space 
vector us

s(t). This angle will be denoted χu(t), cf. (3). 
Further, Tσ = Lσ/Rr is the rotor stray time constant. 
 
 

4. LINEAR PROCESS MODEL 
 
The induction machine is described by equations (1), 
(2) and (4). Inputs are the three stator voltages, 
represented by the magnitude and frequency of the 
stator voltage space vector us

s(t), and outputs are the 
control variables torque and stator flux magnitude. 
To obtain a linear model of the process, these 
equations are preferably rewritten in the form of non-
linear state space equations in the following way 

1 1
cos coss

s r u u

R
m R m m m

L L Lµ µ µ
µ σ σ

δ δ
 

= − + + +  
 

 (7) 

1 1
cosr rm m m

T Tµ
σ σ

δ= −  (8) 

sin sins ur
u u u

R mm

L m mµ µ
σ µ µ

δ δ δ ω= − +  (9) 

1
sin sins ur

u p m
r

mR mm
n

L m T m m
µ

µ
σ µ σ µ

δ δ δ ω
 

= − + + −  
 

 (10) 
where 

 ( ) ( ) ( ) ( ) ( ) ( ),u u rt t t t t tµ µ µδ χ χ δ χ χ= − = −  (11) 

From (4) and (7)-(10), a linear model G from stator 
voltage magnitude and frequency to torque and stator 
flux magnitude can now be derived, i.e. 

 u

u

T m

mµ ω
   

=   
  

sG Gu  (12) 

 
 

5. SCALING 
 
To facilitate the controller analysis, the system is 
scaled as proposed in (Skogestad and Postlethwaite, 
1996). Introducing diagonal scaling matrices Du and 
De, with the maximum expected values of the inputs 
and control errors along the diagonals respectively, 
the induction machine transfer function changes to 

 ˆ-1
e uG = D GD  (13) 

Here the original transfer function is denoted with a 
hat. The limit on the stator voltage magnitude 
follows from (5), and (6) will be used to scale the 
stator voltage frequency, although it only represents 
the maximum steady state frequency. Hence, by 
introducing the stator frequency ωµ as the time 
derivative of χµ, we get (only considering upper 
magnitude limitation) 

 0 0 0
1max 2 max

2 1
max , 0 ,du U m u

Tµ µ
σ

ω
π
 ≈ − = 
 

 (14) 

Here the approximation mu
0 ≈ mµ

0|ωµ
0| valid for all 

but very low stator frequencies was used. The matrix 
De is determined by the maximum control errors set 
to 10% of maximum torque and rated flux (see the 
appendix). 
 
 



 

     

6. INDIRECT SELF CONTROL (ISC) 
 
The continuous time ISC control law is given by 

 ( ) ( ) ( )( ) ( ) ( )s s s
sref T s su t w t jw t t R i tψ µψ= + +  (15) 

where wΨ(t)= FΨ  eΨ is the output of a PI controller 
for the stator flux magnitude and wT(t) is the output 
of a torque controller, given by 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

2

2

2

3

2

3

r
T p m ref

p r

r
T T

p r

R
w t n t T t

n m t

R
F p e t

n m t

ω= + +

+
 (16) 

Here FT is a PI-controller and eT is the error in 
torque. The factor in front of the torque reference is 
the steady state conversion to slip frequency. From 
the analysis in (Mosskull, 2002) it follows that, for 
zero torque, the linearized ISC control law can be 
represented as 

 ( ) ( ) ( )( )reft t T t= +-1
s fwu G Ce C  (17) 

where e(t) = (eT (t) eΨ(t))T and 

( )

( )

( )
( )
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00

T

fw

F s
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sTC s C s

m
F s

s

σ
σ

µ
ψ

 
  +    += =         

 

 (18) 

For the µ-analysis we will focus on the feedback part 
of the controller, which will be denoted K, i.e. 

 -1K = G C  (19) 
Due to pulse width modulation (PWM), the stator 
voltage in (17) will be delayed by Td s. 
 
 

7. CONTROL REQUIREMENTS 
 
The requirements on the closed loop system will be 
set in terms of the transfer functions KS and S, the 
mixed-sensitivity approach (Skogestad and 
Postlethwaite, 1996). The sensitivity function is 
given by S = (I+GK)-1. 
 
 
7.1 Input Requirements - KS. 
 
The magnitude of the stator voltage is restricted by 
(5) whereas the stator frequency is only restricted in 
steady state. Neglecting the steady state constraint on 
the frequency therefore motivates the following 
requirement (note that the absolute values of the 
scaled inputs are limited by one): 

 ( ) ( ) ( )( ) 1 ,j j jσ ω ω ω ω< ∀P1W K S  (20) 

where 

 ( ) 1 0

0 0.01
jω  

=  
 

P1W  (21) 

 
 
7.2 Performance Requirements - S 
 
Performance requirements on the closed loop system 
are often given in terms of torque step response 

times, or equivalently, on the torque control 
bandwidth, ωB. One way of assuring such a 
requirement is to put a constraint on the sensitivity 
function. Thus, we demand that 

 ( )( ) ( )2

1
,

P

j
w j

σ ω ω
ω

< ∀S  (22) 

where 

 ( )2

B

P
B

j

Mw j
j Q

ω ω
ω

ω ω

+
=

+
 (23) 

The parameter Q defines tolerable values for the 
sensitivity function at steady state and M sets the 
limit at high frequencies. In this work the parameters 
are set to 

 M = 2, Q = 1e-6, ωB = 100 rad/s. (24) 
 
 
7.3 Uncertainty 
 
In practice there is always a time delay connected to 
digital controllers. The controller time delay will be 
modeled as an uncertainty at the plant input. That is 

 ( )dj Te ω−⋅ = + I IG G I W ∆  (25) 

where WI = diag(wI, wI) and 

 max

max

, 1
1

2

d
I I

d

j T
w

T
j

ω
ω ∞

= ∆ <
+

 (26) 

The maximum time delay, Tdmax, is set to 2 ms, which 
is reasonable in for example traction applications. 

 
 

8. MODEL FOR CONTROLLER ANALYSIS 
 
The system can now be put on the standard form 
used for µ-analysis/synthesis, see Fig. 2. 
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Fig. 2. Plant model for µ-analysis. 

The system P is given by 

 

 
 
      =              
 

I

p1

p2 p2 p2

0 0 W

0 0 W
P

W G W W G

-G -I -G

 (27) 

where the following notation was introduced WP2 = 
diag(wP2, wP2). 



 

     

8.1 Evaluation Criteria 
 
Controller evaluation is done by closing the loop and 
introducing a fictitious performance uncertainty ∆P, 
see Fig. 3. 

u y

N

∆I
∆P

 
Fig. 3. Plant model for controller evaluation. 

Now four criteria can be defined in terms of the 
structured singular value µ, (Skogestad and 
Postlethwaite, 1996): 
 
Nominal Stability (NS): N internally stable 
Nominal Performance (NP): 

 ( )( ) 1 ,jµ ω ω< ∀
P∆ 22N (and NS) (28) 

Robust Stability (RS): 

 ( )( ) 1 ,jµ ω ω< ∀
I∆ 11N  (and NS) (29) 

Robust Performance (RP): 

 ( )( ) 1 ,jµ ω ω< ∀∆ N  (and NS) (30) 

where ∆ = diag(∆I, ∆P). 
 
 

9. CONTROLLER EVALUATION 
 
This section shows the evaluation criteria (28)–(30) 
when ISC is applied to an induction machine with 
the data given in the appendix. The controller is 
tuned according to recommendations in (Mosskull, 
2002) to give a bandwidth of 100 rad/s. The analysis 
is done for three operating points with nominal flux 
and zero torque, where the stator frequency is set to 
10% (OP1), 50% (OP2) and 90% (OP3) of base 
speed ω0. The sampling time is 0.5 ms for all 
operating points and the results are presented in Fig. 
4, Fig. 6 and Fig. 8. Under the assumption of perfect 
parameters, the analysis in (Mosskull, 2002) 
indicates no difference in behavior between the 
different operating points. This also follows from 
Fig. 4. The reason that the nominal performance at 
operating point three deviates from the first two 
operating points is that the maximum singular value 
of KS gets close to the limit. It however stays less 
than the limit. Note that this is possible as ||(1 1)T|| = 
√2, which is larger than one. The robust stability and 
robust performance criteria for the ISC all show 
peaks at frequencies corresponding to the operating 
point stator frequency, see Fig. 6 and Fig. 8. This 
was to be expected as a linearized model of the 
induction motor has large relative gain array (RGA) 
elements at higher stator frequencies, see (Mosskull, 
2004). Inverse-based controllers, such as (19), are 
usually not recommended for plants with large RGA 
elements, (Skogestad and Postlethwaite, 1996). 
 
To further evaluate the ISC, linear µ-synthesis 
controllers were designed for the three operating 
points. The resulting structured singular values with 

these controllers are shown in Fig. 5, Fig. 7 and Fig. 
9. The µ-synthesis design shows that it is possible to 
reduce the peaks of the RP singular values at 
dispense of nominal performance. Note that µ -
synthesis is with respect to RP. 
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Fig. 4. Nominal performance criterion: ISC. 
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Fig. 5. Nominal performance criterion: µ-synthesis. 
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Fig. 6. Robust stability criterion: ISC. 
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Fig. 7. Robust stability criterion: µ-synthesis. 
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Fig. 8. Robust performance criterion: ISC. 
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Fig. 9. Robust performance criterion: µ-synthesis. 

 
 

10. SIMULATIONS 
 
In this section some simulation results are shown to 
check the theoretical results obtained above. A 
discrete-time ISC is compared with the designed µ-
synthesis controllers. The µ-synthesis controllers 
were discretized through zero-order holds on the 
inputs. The simulation consists of 
 

•  torque steps between 0 and 500 Nm 
•  a flux step from 100% to 90% of nominal 

flux at time 2.25 s 
 
Step responses with the ISC are shown in Fig. 10 
when the controller uses correct motor parameters. 
The step responses are scaled according to (13), i.e. 
one in the plots corresponds to 10% of maximum 
torque and rated flux, respectively. The responses are 
more or less independent of the operating point and 
the cross-coupling is very small. There is no sign of 
the problems predicted by peaks in the structured 
singular values in Fig. 8, although the simulation 
loop contains time delays. The corresponding results 
with the µ-synthesis controller are shown in Fig. 11. 
We see a worse nominal performance as is indicated 
by Fig. 5, where especially the cross-coupling from 
torque reference to flux is large. 
 
To see the effect of the peaks of the structured 
singular values, model errors are introduced by 
changing the parameters of the motor while keeping 

the parameters used by the controller fixed. The 
worst combination seems to be to increase the stator 
resistance and to decrease the leakage inductions of 
the motor. In Fig. 12 step responses at OP2 are 
shown where the stator resistance of the real machine 
is increased by a factor four and the leakage 
inductance is decreased by a factor four. Although 
these are unrealistically large model errors, the 
results are still not too bad with the ISC. As a matter 
of fact, the corresponding simulation with the µ-
synthesis controller is unstable. 
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Fig. 10. Step responses with ISC. 
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Fig. 11. Step responses with the µ-synthesis 

controller. 
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Fig. 12. Step responses with the ISC where the stator 

resistance is four times larger and the leakage 
inductance four times smaller compared to the 
values used by the controller. 



 

     

Actually, the discrete time ISC proposed by 
(Maischak, 1995) uses the reference magnitude for 
the stator flux explicitly shown in (15) instead of the 
actual magnitude. The simulations as well as the 
analysis performed above have considered the case 
with the actual flux magnitude. By strictly following 
(Maischak, 1995), the simulation results in the ideal 
case with perfect motor parameters are shown in Fig. 
13. Compared to Fig. 10 we see a very large 
disturbance in torque at a step in the flux reference. 
Although the deviation in flux is small (note only 
magnitude deviation), the error in torque is large and 
the error increases with the operating point rotor 
speed. This fits with the results of Fig. 8. In this case 
however the error is not caused by erroneous 
parameters but caused by an approximation in the 
control law, which gives an error in the magnitude of 
the stator flux. 
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Fig. 13. Step responses with ISC as proposed in 

(Maischak, 1995). 

 
 

11. CONCLUSION 
 
In an attempt to properly analyze robustness of 
Indirect Self Control (ISC) of an induction machine, 
µ-analysis was applied to linearized models of the 
system. The analysis indicates decreasing robust 
stability as well as robust performance with 
increasing rotor speed. Problems are to be expected 
for frequencies around the operating point stator 
frequency. At simulations with different parameters 
of the induction machine and the controller, the ISC 
still performed surprisingly well. Even with large 
model errors it outperformed µ-synthesis controllers 
designed for optimal robust performance. It was 
concluded that the worst case model errors, giving 
large structured singular values during analysis, were 
not obtained by the tried variations of motor 
parameters. However, by slightly modifying the ISC 
control law, to use the reference stator flux 
magnitude instead of the actual value, small steps in 
the flux reference were shown to have large impact 
on the torque. 
 
Compared to the analysis for classical field-oriented 
controllers, given in (Thomas, 1993), the structured 
singular values for ISC show sharper peaks. 

Otherwise, control methods relying on stator flux 
estimation, such as DTC techniques, are considered 
more robust to parameter variations compared to 
field-oriented controllers orienting to rotor flux. 
Under ideal conditions, stator flux estimation only 
depends on one motor parameter, the stator 
resistance; whereas rotor flux estimation involves 
more motor parameters, see e.g. (Xu et al., 1993). 
 

APPENDIX: Γ−MODEL MOTOR DATA 
 
Stator resistance  Rs = 18.5mΩ 
Rotor resistance  Rr = 17.3mΩ 
Stator inductance  Lµ = 6.2mH 
Leakage inductance Lσ = 0.79mH 
Number of pole pairs p = 2 
Rated DC-link voltage U0 = 750V 
Base speed  ω0 = 528rad/s 
Rated flux  Ψ0 = 0.9Vs 
Maximum torque  Tmax =          1400Nm 
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