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Abstract: The performance of stochastic optimal power control of time-varying wireless 
short-term flat fading channels, in which the evolution of the dynamical channel is 
described by a stochastic state space representation, is determined. The solution of the 
stochastic optimal control is obtained through path-wise optimization, which is solved by 
linear programming using a predictable power control strategy. The algorithm can be 
implemented using an iterative power control algorithm. The performance measure of the 
algorithm is interference or outage probability. The algorithm can be used as long as the 
time duration for successive adjustments of transmitter powers is less than the coherence 
time of the channel. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Power control is important to improve performance 
of wireless communication systems. Most of the 
research that has been done in this field deals with 
static wireless channel models. But in reality, 
wireless channels are dynamic due to the relative 
motion between the transmitter and the receiver and 
the temporal variations of the propagation 
environment (Charalambous and Menemenlis, 2001). 
Therefore dynamical channel models are more 
realistic than static ones. The random variables 
characterizing the instantaneous power of each multi-
path component in short-term fading (STF) model 
are generalized to dynamical models comprising 
random processes with time varying statistics.  
 

Since wireless channels have random and time 
varying properties, this paper suggests using 
dynamical (time varying) channel models. The 
dynamics of the channel is captured by stochastic 
differential equations (SDE’s). A stochastic power 
control algorithm (PCA) is applied to determine the 
optimal transmitted powers. The proposed PCA is 
based on predictable power control strategy (PPCS) 
that was first developed by Charalambous, et al. 
(2001). The PPCS algorithm is proven to be 
effectively applicable to such dynamical models for 
an optimal power control (PC). The outage 
probability is used as a performance measure for the 
proposed algorithm. Simulation results illustrate the 
efficiency and the advantages of the algorithm 
developed. In this paper, centralized power control 
(CPC) and closed loop PC schemes are used. 



     

Moreover, iterative algorithms can be used to find 
the optimal powers for the proposed PCA. 
 
The power allocation problem has been studied 
extensively as an eigenvalue problem for non-
negative matrices (Zander, 1992), as iterative PCA’s 
that converge each user’s power to the minimum 
power (Foschini and Miljanic, 1993), and as 
optimization-based approaches (Kandukuri and 
Boyd, 2002). Much of this previous work deals with 
static channel models. The scheme introduced by 
Kandukuri and Boyd, (2002) whereby the statistics 
of the received signal to interference ratio (SIR) are 
used to allocate power, rather than an instantaneous 
SIR. The allocation decisions can then be made on a 
much slower time scale. 
 
In this paper, the performance of the PCA is 
measured by outage probability and calculations of 
the outage probability have been simulated. 
Simulation results are provided comparing the 
performance of the proposed method (i.e. PPCS) 
with the performance of no power control (NPC) for 
both Rayleigh and Ricean fading channels. 
 
 

2. DYNAMICAL SHORT TERM FLAT FADING 
CHANNEL MODEL 

 
The traditional STF model is based on Ossanna, 
(1964) and later expanded by Clarke, (1968) and 
Aulin, (1979). Aulin’s model is shown in Fig.1. This 
model assumes that at each point between a 
transmitter and a receiver, the total received wave 
consists of the superposition of N plane waves each 
having travelled via a different path.  The nth wave is 
characterized by its field vector En(t) given by: 
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where { }( ), ( )n nI t Q t  are the corresponding inphase 
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field E(t) is given by: 
 

 
 

Fig. 1: Aulin’s 3D multipath scattering model. 
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= ∑ . By the central limit theorem, 

for large N (typically N ≥ 6), the inphase and 
quadrature components have Gaussian distributions 

2( ; )N x σ , with same values for mean and variance 
(Clarke, 1968). The mean is x := E[I(t)] = E[Q(t)] 
and the variance is 2σ  := Var(I(t)) = Var(Q(t)). In 
the case where there is no specular or line of sight 
(LOS) component between the transmitter and the 
intended receiver, then the mean x  = 0 and the 
received signal amplitude has Rayleigh distribution. 
In the presence of the LOS component, x ≠ 0 and the 
received signal envelope is Ricean distributed. Also, 
it is assumed that I(t) and Q(t) are uncorrelated and 
thus independent since they are Gaussian distributed 
(Aulin, 1979). 
 
The main idea in constructing the dynamical model 
for short term flat fading channels is to factorize the 
Doppler power spectral density (DPSD) into an 
approximate 4th order even transfer function, and 
then any stochastic realization can be used to obtain a 
state space representation for inphase and quadrature 
components. 
 
Consider the expression for the DPSD given by 
(Aulin, 1979): 
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and { },α β  define the direction of the incident wave 
onto the receiver as illustrated in Fig. 1, ( )Xp x  
denotes a probability density function of the random 
variable X. mf  is the maximum Doppler frequency, 
and E0/2 = Var(I(t)) = Var(Q(t)). In order to 
approximate the DPSD in (3), a 4th order even 
function in the form ( ) ( ) ( )DS s H s H s= −�  with 
factorization shown below is used (Charalambous 
and Menemenlis, 2000). 
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where ( )DS s�  is the approximation of ( )DS s . 
Equation (4) has three arbitrary parameters 
{ }, ,n Kζ ω , which can be adjusted such that the 
approximate curve coincides with the actual curve at 
different points. In fact, if these parameters are 
chosen such that:  
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then the approximate density ( )DS s�  coincides with 
the exact density ( )DS s  at ω  = 0 and ω  = maxω .  
 
The SDE which corresponds to H(s) in (4) with the 
initial conditions is: 
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where (0), (0)x x�  are given and { } 0
( )

t
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≥
�  is a white-

noise process. (6) can be re-written in terms of 
inphase and quadrature components as:  
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identically distributed (i.i.d) white Gaussian noises 
with distribution 2(0; )N ωσ . Equations (7) and (8) can 
be realized in state-space controllable canonical form 
as: 
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then the stochastic state space realizations for 
Rayleigh and Ricean flat fading channels can be 
described as: 
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or LOS component for Ricean fading given by:    
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where fs(t) = 0 for Rayleigh fading. Equation (10) 
captures the variations in the path loss ( ),X t τ .  
 
Now consider a cellular network with M transmitters 
and M receivers. The received signal at the nth base 
station can be expressed in terms of inphase and 
quadrature components as: 
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where uj is the control input of transmitter j which 
acts as scaling on the information signal sj, Inj and Qnj 
are the inphase and quadrature components 
respectively, and dn is the channel disturbance or 
noise at receiver n. It can be shown that 
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dimensional linear SDE:  
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for 1 ≤ n, k ≤ M.  Here { } 0
( )nk t
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≥

 is a vector of 

standard Brownian motion, { }
0
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nk nkI Q t
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 are 

state vectors representing power path loss associated 
with the inphase and the quadrature components of 
the channel, and nkf  is the LOS component for 
Ricean STF channel model. Let 
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:
nk nknk I QX X X =   , then the state space 

representation of a wireless network can be written:  
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The next section describes the PCA that achieves the 
minimal transmitted power in stochastic short-term 
flat fading channels. 
 
 

3. POWER CONTROL MODEL 
 
3.1 Stochastic Power Control Scheme 
 
Consider a wireless network of M transmitters and M 
receivers. The optimal PCA can then be posed in 
terms of the following optimization (Kandukuri and 
Boyd, 2002): 
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 Here pn denotes the 

power of transmitter n, gnj > 0 denotes the channel 
gain of transmitter j to the receiver assigned to 
transmitter n, 0nγ >  is the required SIR and 0nη >  
is the noise power level at the nth receiver, 1 ≤ n, j ≤ 
M.  Equations (18) and (19) in dynamic case using 
the path-wise QoS of each user with respect to the 
power signals over a time interval [0,T] are given as 
(Charalambous, et al., 2001): 
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where (1 ≤ n ≤ M) and Hnj, Xnj(t), pj(t), dn(t) are the 
same as defined in the dynamical STF channel 
model, and .  is the Euclidean norm. 
 

In wireless cellular networks, it is practical to 
observe and estimate channels at base stations and 
then communicate the information to the transmitters 
to adjust their control input signals { } 1

( ) M
k k

u t
=

. Since 
channel experiences delays, and the control are not 
feasible continuously in time but only at discrete 
time instants, the concept of predictable strategies is 
introduced (Charalambous, et al., 2001). 

 Let the control input signal for a transmitter at 
discrete time be { }1 2( ); , , ,u t t t t T= "  and let the 
channel information at any time t be denoted by 
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to the transmitters and held constant during the time 
interval )1,j jt t + . Such decision strategies are called 
predictable strategies. Using the concept of PPCS 
over any time interval defined as [tk, tk+1], the 
equivalence of (18) and (19) is: 
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1( , , ),Mdiag γ γΓ = "  diag (.) denotes a diagonal 
matrix with its argument as diagonal entries, and “T” 
stands for matrix or vector transpose. The 
optimization in (21) is a linear programming problem 
in 1M ×  vector of unknowns p(tk+1). Here [tk, tk+1] 
denotes time interval of the signal such that the 
channel model does not change significantly, i.e., it 
is shorter than the coherence time of the channel. 
The performance measure is interference or outage 
probability. It is defined as the probability that a 
randomly chosen link will fail due to excessive 
interference (Zander, 1992). Therefore, smaller 
outage probability implies larger capacity of the 
wireless network. A link with received SIR rcvdγ  less 
than or equal to threshold SIR thγ  is considered a 
communication failure. The outage probability 

( )rcvdF γ  is expressed as ( ) Pr{ }th rcvd thF γ γ γ= ≤ , 

where ( )rcvdF γ  is the distribution of rcvdγ .  
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3.2 Iterative Power Control Scheme 
 
Since PC only occurs at discrete time instants using 
PPCS, the iterative algorithm described by Foschini 
and Miljanic (1993) can be used to determine the 
optimal transmitted powers. Define 
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Then the constraint in (21) can be rewritten as: 
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and also can be written as: 
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n is the number of iterations. It is shown that the 
iterative PC in (24) and (25) converges to the optimal 
(minimal) power vector (Foschini and Miljanic, 
1993; Bambos and Kandukuri, 2002). The numerical 
implementation of the iterative scheme can be carried 
out during processing in the interval [tk, tk+1]. 
 
 

4. NUMERICAL RESULTS 
 
In this section, we give numerical examples to 
determine the outage probability of the PPCS 
algorithm for both Rayleigh and Ricean fading 
channel models. The wireless cellular model has the 
following features: 

• Number of transmitters/receivers is M = 24. 
• Carrier frequency = 910 MHz. 
• The average velocities of mobiles are 

generated as independent random variables 
uniformly distributed in [20 – 100] km/hr. 

• E0ii‘s are independent random variables 
uniformly distributed in the range [400-600]. 

• E0ij‘s (i ≠ j) are independent random variables 
uniformly distributed in the range [25-150].  

• Angles of arrival 
ijmβ ’s for each link are 

generated as independent random variables 
uniformly distributed in [0 – 36] degrees, 
where 

ijmβ  is the direction of the incident 
wave between transmitter j and receiver i. 

• nη ’s are independent Gaussian random 
variables with zero mean and variance 4*10-8. 

 

The parameters { }, ,n Kζ ω  are extracted from the 
DPSD as described in (5). Both Rayleigh and Ricean 
cases are simulated. 
 
 
4.1 Rayleigh flat fading channel 
 
This scenario represents flat Rayleigh fading where 
the signal envelop at the receivers exhibit Rayleigh 
distributed density. The outage probabilities as a 
function of SIR and time for both PC and NPC cases 
are shown in Fig. 2. It shows how the outage 
probability changes with respect to SIR threshold 
( thγ ) and time. As the thγ  increases, the outage 
probability also increases. This is obvious since we 
expect more users to fail. Changes with respect to 
time are due to the dynamicity of the channel model. 
 
The average outage probabilities over all time 
intervals are shown in Fig. 3 (a). The performance of 
PPCS is compared with the one for fixed transmitter 
power (i.e. NPC). Results show that the PPCS 
algorithm outperforms the reference algorithm. It is 
noticed that the outage probability for PPCS is less 
than the one for NPC by about 20%. For example, at 
15 dB SIR threshold, the outage probability of 
Rayleigh flat channel is reduced from 0.6 for NPC 
case to 0.3 for PPCS case. 
 
 
4.2 Ricean flat fading channel 
 
This scenario represents Ricean fading where the 
STF channel model has LOS path. The same 
procedure is followed as Rayleigh fading channels. 
The average outage probability of this case for both 
PPCS and NPC cases are shown in Fig. 3 (b). From 
Fig. 3 (b), the outage probability for PPCS is less 
than the one for NPC. And the performance of flat 
Ricean fading is better than the one for flat Rayleigh 
fading channels. This is because the existence of 
LOS component in Ricean channels. 
 



     

 
(a)  

 
(b) 

Fig. 2: Outage probability for dynamical flat 
Rayleigh short term fading model. (a) Using 
PPCS algorithm. (b) Using NPC. 

 

 
(a) 

 

 
(b) 

Fig. 3: Average outage probability for (a) Rayleigh 
channel (b) Ricean channel. 

5. CONCLUSIONS 
 

PPCS power control scheme as developed by 
Charalambous, et al. (2001) is applied to time-
varying flat STF channel model. The dynamics of the 
channel is captured by stochastic state space 
representation. The optimization problem is solved 
by linear programming. Iterative algorithms can be 
used to solve for the optimization problem. The 
performance measure is interference or outage 
probability. Numerical results indicate that the 
performance of PPCS outperforms the performance 
of NPC. PPCS algorithm can be used as long as the 
channel model does not change significantly, that is 
[tk, tk+1] is a subset of the coherence time of the 
channel. 
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