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Abstract: A novel genetic algorithm based neural modelling platform is developed for 
nonlinear dynamic systems. In this platform, the selection of neural inputs, optimisation 
of the neural network structure and identification of the optimal connection weights are 
formulated as an integrated optimisation problem. Both one-step-ahead and long-term 
prediction performances of the neural model are incorporated into the performance 
index. Genetic algorithms are then used for this mixed integer nonlinear optimisation 
problem. The platform provides user-friendly environment that gives users maximal 
flexibility in defining the modelling project and detailed visualisations of the 
optimisation process. This platform is then applied to the NOx emission modelling and 
prediction of a coal-fired power generation plant to confirm its effectiveness. Copyright 
© 2005 IFAC 
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1. INTRODUCTION 
 
Neural networks have been widely used in nonlinear 
dynamic system modelling due to their universal 
approximation ability and simple model structure. 
Several issues in neural modelling have been 
examined (Anders and Korn, 1999; Li, Thompson 
and Peng, 2004; Yu, Gomm, and Williams, 2000), 
but they have not been fully exploited as a whole.  
 
The first issue is the dilemma between the short-term 
and long-term prediction performances of a neural 
model. Many training algorithms for neural 
modelling are based on a criterion which assesses the 
one-step-ahead prediction performance of the neural 
model. In practice, a one-step-ahead prediction 
model may carry little system information, since the 
sampling rate in a process may be high enough that 
the immediate past outputs give the most significant 

contributions to the cost function. Therefore the 
contributions of other useful variables become much 
less important and indistinctive. To avoid this 
situation, the long-term prediction performance is 
often preferred to be a part of the performance index 
to assess the neural model. However most batch 
algorithms cannot be directly used to effectively 
train external recurrent neural networks against a 
performance index taking into account the long-term 
prediction performance.  
 
The second issue is how to control the complexity of 
a neural model (Anders and Korn, 1999). It is well 
understood that although a network having more 
hidden neurons are better in fitting the training data, 
a complex network is often poor in predicting unseen 
data. The popular methods are to prune redundant 
hidden nodes based on some information criteria or 
to regularise the network training by adding 



additional term on the cost function to penalise large 
weights. 
 
The third important issue is to select the neural 
inputs (Yu, Gomm, and Williams, 2000). To feed the 
neural model with all possible variables in dynamic 
forms often produce a complex neural network with 
poor generalisation performance. The existing 
methods are to select possible neural inputs from 
multiple local linear models.  
 
Although the three issues have been addressed 
separately in the literature, they are rarely considered 
as a whole, partly due to the complexity of the 
problem and partly due to the lack of powerful 
computation tools. In this paper the three issues are 
dealt with in one integrated framework with the 
support of a powerful optimisation tool.  
 
This paper is organised as follows. In section 2, an 
optimisation criterion combining both the one-step-
ahead and the long-term prediction performance of 
the neural model is proposed. Neural input selection, 
network structure optimization, and optimal 
connection weight identification are formulated as 
one problem. Then a scheme is proposed to solve the 
integrated optimization problem using genetic 
algorithms (GAs). In section 3, an integrated 
software platform is described. This platform is 
applied to model NOx emissions from a coal-fired 
power generation plant in section 4 and concluding 
remarks are presented in section 5. 
 
 

2. FORMULATION OF THE NEURAL 
NETWORK OPTIMISATION PROBLEM 

 
To simplify the notation, MISO systems are 
considered in this paper. A discrete nonlinear 
dynamical system of m inputs and single output can 
then be represented as: 
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where t is the time instant,  is the output, 

 the input vector, 
R∈)t(y
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some nonlinear function, and lu and ly are the 
maximal orders for input and output variables.  
 
Suppose a neural network model is used to 
approximate the nonlinear system (1) with one or 
more hidden layers using feed-forward structure. All 
system input variables in past time instant, 

, and the system 
output in past time instant, , are 

fed into the network to generate the network output 
 which is the system output in current time 

instant. Let the number of hidden layers as h, and 
then the neural network can be formularized as 

follows: 
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hidden layer; , )k(
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i’th neuron in the k’th hidden layer; ,   
is the output weight from the i’th neuron of the last 
(the h’th) hidden layer to the output and w  is the 

output bias; , i
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connection weight from the the j’th neuron of the (k-
1)’th hidden layer to the i’th neuron of the k’th 
hidden layer and  is the bias; , 

1kn,,1j −= L

)k(
i~0w )k(

iφ

kn,,1i L= , denotes the activation function of the 
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In general, activation functions are selected ‘a priori’ 
for traditional neural networks, e.g. hyperbolic 
tangent or Gaussian, etc. Given the activation 
functions, the network can be formulated as a 
function of the connection weights and biases, which 
are to be optimised against a criterion. Now suppose 
a set of data of N samples, denoted as Ω , is 
obtained, and the neural network needs to be trained 
over the data set, i.e. to minimise a cost function, 
normally the least squares: 
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where W denotes all the weights and biases, 
including  and , and K denotes the total 

number of the weights together with biases,  
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with  denoting the number of network outputs, 
here 

1hn +

n 1h 1=+ ; { ,)t(y N,,1t L= } is the output 

series and { ,)t()1ŷ( N,,1t L= } are network 
predictions, where the superscript "(1)" indicates that 
they are the one-step-ahead predictions of the system 
output.  
 



Now that the output weights are given in (8), the task 
to optimise the network structure and the connection 
weights is then to identify the best selection vector 
and a parameter vector that are associated with the 
selected selection vector, excluding the output 
weights w. This parameter vector excluding the 
output weights is defined as: 

To train the network using (3), the network structure, 
including the number of hidden layers and the 
number of neurons in each hidden layer, has to be 
predetermined. Furthermore if all possible neural 
inputs are used, the network will inevitably get more 
complex. In this paper, optimisation of the network 
structure and identification of the optimal connection 
weights are formulated as one optimisation problem 
- Suppose all the inputs ’s to the network and 

the outputs ’s from all the hidden neurons are 
all referred to as signal channels, then the total 
number of signal channels is  
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The number of elements in vector W~  is 
∑ += = −

h
1k k1k n)1n(K~ . 

 

∑ += = +
h

0k 1kk n)1n(M                (5) 
  
Given the above definitions, a one-to-one mapping 
can be established between the networks and the 
vector pair (S, W ), i.e. a vector pair (S, W ) 
uniquely specifies a neural network. The least 
squares criterion index in (3) can be reformulated as  

where  is the number of network outputs, and 
in this paper, =1 for single-output networks. 
Each signal channel in the network is tagged with a 
Boolean variable, say  for , which is called 
selection variable. Obviously we have M selection 
variables for the M signal channels. If  then 

the signal channel  is enabled (or being 
selected) and the weights connecting to the signal 
channel are also enabled, otherwise the signal 
channel and its associated weights in the network are 
disabled (or unselected). Then network (2) can be 
reformulated as 
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where the criterion index  is defined as the sum 
squares of one-step-ahead prediction errors. And the 
network input selection, structure optimization and 
identification of optimal connection weights are 
performed using 
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To control the complexity of neural networks, an 
additional constraint is imposed on the network 
optimisation, i.e. the total number of neural inputs 
and hidden neurons is restricted, which is denoted as 
C, i.e. C )(sum S= . The constrained optimization 
problem is then reformulated as  

 
All the M selection variables then can be re-written 
using a vector, 
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which is referred to as the selection vector. 
Obviously the selection vector defines the actual 
network structure.  

 
where K and M are dimensions of vector S and M, 
which are defined in (4) and (5), respectively; C is a 
predetermined constant integer, which restricts the 
total number of neural inputs and hidden neurons. C 
is an index relating to the neural model complexity 
therefore its choice should reflect the complexity of 
the problem. Alternatively, C could be incorporated 
into the performance index.     

 
To minimize the least squares index (3), the output 
weights  can always be 

explicitly expressed as 
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section that, in modelling nonlinear dynamic systems 
however the long-term prediction performance of a 

),(J )1( WS

h
T)h(

i
)h(

i
)h(

i n,,1,0i,)]N(x,),1(x[ LL ==x ,  

and . N,,1t,1)t(x )h(
0 L==



As shown in Fig. 1, each chromosome has C integer 
genes and M floating-point genes; C and M have 
been defined above. In a GA search, it is always 
ensured that C1,..,i ],1K,0[I i =−∈  (K is the length 
of the vector S) and ji II ≠ for . 
Each chromosome is tagged with a positive number, 
called fitness. Fitness is a measure of the 
performance of a solution coded in chromosome. In 
this paper,  defined in (15) is used as the 
raw fitness of a chromosome. To adjust the 
competition scale between different chromosomes in 
a population, fitness ranking is often applied. 

C,,1j,i,j L=≠i

),(J WS

model is often more important. To produce a neural 
model with good long-term prediction performance, 
the optimisation criterion defined in (12) has to be 
modified. Given a network defined by the vector pair 
(S, W) with its output weights determined in (8), its 
long-term predictions is defined as  
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Based on the above analysis, GA-based C++ 
software has been developed as an integrated 
platform for neural network based nonlinear 
dynamic modelling. The main characteristics of the 
software are: 

(13) 
 
In this long-term prediction model, past values of the 
system output fed into the neural networks have been 
replaced with their predicted values by the neural 
network. The sum squares of the long-term 
prediction errors is defined as  

 
1) Maximal flexibility for project definition. The 
GA based neural modelling is initialised by a project 
definition file. Users can define GA parameters, the 
system inputs and outputs, training and validation 
data sets, the network structure, and the criterion to 
be minimised etc.  
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2) Both homogenous and heterogeneous networks 
are supported. An activation function pool is 
designed to enable users to uses any of the functions 
listed for the hidden and output nodes. The software 
also supports user-defined activation functions. In 
addition, user defined activation functions are 
allowed to contain any parameters to be optimised. 

Now integrated optimisation criteria for the neural 
network can be defined as  
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where  are predefined weights for the one-
step-ahead and long-term prediction performance of 
the model. Finally the neural network optimisation 
problem can be formulated as  
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  (16) Fig. 1 Chromosome encoding scheme 
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Obviously (16) is a real-integer mixed hard problem. 
Conventional analytic methods often fail to search 
the optimal solution for such problems. As a 
stochastic optimisation tool, the genetic algorithm 
has ever been used to train neural networks (Blanco, 
Delgado and Pegalajar, 2001). In this paper, it will 
be used for the above mixed optimisation problem.  
 
 

3. NEURAL NETWORK OPTIMIZATION 
PLATFORM USING GENETIC ALGORITHMS 

 
To solve an optimization problem using genetic 
algorithms, a solution-encoding scheme is first 
required, through which each solution to the problem 
is represented as a chromosome. With regard to the 
optimization problem (16), a solution comprises two 
parts, i.e. a boolean selection vector S and a real-
valued parameter vector W. The scheme of encoding 
the solutions is illustrated in Fig. 1. 

 
Fig. 2. Software structure 
 
3) A data pre-processing module is developed, 
which can be used to perform data normalisation. 



4) Multiple sets of data may be specified for both 
network optimisation and validation. Different 
format of data sets are supported, e.g. MATLAB 
files (*.m), ASCII text data files (*.txt) and binary 
data files (*.dat).  
 
5) The C++ software has interfaced with MATLAB, 
which enables the software to exchange data with a 
MATLAB workspace and to call MATLAB 
functions.  
 
6) A MATLAB source code generator is designed. 
It can output neural models in MATLAB code in 
order that the results produced in the software can be 
reproduced in the MATLAB using the generated 
MATLAB codes. 
 
7) Different “views” are designed to monitor the 
evolution process in text or graphic form, for 
examples, to visualize the evolution process, the 
validation results, and parameter sensitivity.  
 
Fig. 2 summarises the software structure and 
information flow between different modules.  
 
 

4. APPLICATION AND RESULTS 
 
The proposed neural modelling method was applied 
to model the NOx emission in a cyclic thermal 
power plant with two generating units (Li, 
Thompson and Peng, 2004). Each unit has a dual 
fired (oil or coal) drum boiler and produces full load 
300 MWe with oil firing or 200 MWe with coal 
firing. There is one burner box on each corner. There 
are four burner boxes, one at each corner that will 
supply the furnace with oil or pf coal. All of the 
sections in each burner box tilt in unison through 
±25°, relative to the horizontal. This is achieved by 
means of a burner tilt mechanism.  
 
Coal is the major source of fuel. Coal is taken from 
the bottom of a coal bunker, pulverised and then 
entrained in a hot primary airflow. Primary air dries 
and carries the pf coal to the burners. Each corner of 
the furnace houses a burner box and a separated 
overfire air (SOFA) box, which admit fuel and 
secondary air streams into the furnace. These streams 
are directed at tangents to imaginary firing circles in 
the centre of the furnace. The tangential firing 
creates turbulence in the combustion area that 
ensures the thorough mixing of fuel and air streams 
necessary for complete combustion. Low momentum 
burners are employed to achieve a longer flame path, 
leading to reduced flame temperatures.  
 
Plant data covering about 6-day’s operation period 
were obtained. The following data sampled each 
minute were available: NOx ): Mass flow of fuel 

 (Kg/s); Mass flow of air m (Kg/s), 

specifically, mass flow of primary air  and mass 

flow of secondary air  (Kg/s); Tilting position of 
burners 

fm a

pam

sam
θ  (degree). 

e=

 
Table 1 Statistics of the NOx emissions (ppm) 

 
 Data set 1 Data set 2 Data set 3 

Mean 306.80 296.92 298.70 
STD 21.92 20.85 17.40 

 
[Parameters] 
 Parameters 01 = w01: 02, [-1,1] 
[Neural Network] 
 Input Layer = [mf, mpa, msa, tilt], 6 
 Output Layer = [NOx] 
 Hidden Layer 1 = [5 * dllMLEXP], 5 
 Input Preprocessing = Normalisation {Period 1, Period 2, Period 3} 
[Extended Index] 
 Criterion  = 0.2 * NMSE1 ( NOx, { Period 1 } | {Period 1} ) + \\ 
     0.8 * NMSEL ( NOx, { Period 1 } | {Period 1} ) 
 Validation 1 = NMSEL( NOx, {Period 2, Period 3 } | { Period 1 } ) 
 Validation 2  = NMSEL( NOx, {Period 1, Period 2, Period 3 } | {Period 
2} ) 
 Validation 3  = NMSEL( NOx, {Period 1, Period 2, Period 3 } | {Period 
3} ) 
 Evolution Record = {Validation 1, Validation 2, Validation 3} 

 
Fig. 3 Definition of the network set, the criterion and 
validation indices in the project definition file 

 
The normalized data were split into three sets (data 
set 1 with 2300 samples, data set 2 with 3000 
samples and data set 3 with 2500 samples). The 
mean value and standard deviations for the NOx 
emissions in the three data sets are listed in Table 1. 
 
Of the three data sets, data set 1 is used for neural 
model optimisation, data set 2 and 3 for model 
validation. A one-hidden layer neural network with 
activation function  was developed. 

In the chromosome representation, all the system 
inputs and the NOx output with an order of 4 were 
coded as the neural network inputs, and 5 hidden 
neurons were also coded into the chromosome. 
These network inputs and hidden nodes constituted 
the segment of integer genes in the chromosome. 
The genetic algorithm was then used to select a 
subset of these integer genes and to optimise their 
associated floating genes to generate a solution to the 
optimisation problem.   

))bx/( +(cϕ

 
The neural network structure defined in the project 
definition file is shown in Fig. 3. In Fig. 3, field 
[Parameters] defines the parameters in the activation 
functions to be optimised. In the file, two 
parameters, named w01 and w02, are defined within 
range [-1, 1]. They represent  in the activation 
functions 

b,c
ϕ . In field [Neural Network] in Fig. 3, 

input layer contains all system input variables in 
time, and it is required that at least 6 of these inputs 
are selected. ‘dllMLEXP’  stands for ϕ . NMSE1 
and NMSEL in Fig. 3 are build-in functions for 
calculating normalized mean squares of one-step-



ahead and long-term prediction errors. The software 
interface for neural modelling of NOx emissions is 
illustrated in Fig. 4. 

  

 
The neural model optimised against the performance 
index defined in Fig. 3 (Model 1) is a 6-5-1 neural 
network comprising 6 inputs and 5 hidden nodes. 
The GA parameters are: one population with a size 
of 400, crossover rate 0.95, and mutation rate 0.05.  
 
Finally, to illustrate the flexibility of this modelling 
platform, another 6-5-1 neural model was optimised 
against the NMSE1 only (Model 2), i.e. NMSE1 is 
set to 0, and NMSEL is set to 0 in Fig. 3. The GA 
parameters are kept the same. 
 Fig. 4 Layout of the software interface 

 Table 2 Short -term prediction performance (RMSE) 
of the two neural models   

5. CONCLUSION    
Model Data set 50  

gen 
100 
 gen 

Modelling 6.7665 6.7072  
Model 1 Valid-1 4.8149 4.7035 

 Valid-2  4.5262 4.5044 
Modelling 6.1864 6.1763  

Model 2 Valid-1 4.2435 4.2488 
 Valid-2 4.6641 4.2321 

A novel GA-based neural modelling platform has 
been developed. Using this platform, the selection of 
neural inputs, optimisation of the neural network 
structure and identification of optimal connection 
weights can be formularized as one integrated 
optimisation problem. Both one-step ahead and long-
term prediction performances of the neural models 
are incorporated into one fitness function for GA 
optimisation. This platform has then applied to 
model the NOx emissions from a thermal power 
plant to confirm the effectiveness and flexibility in 
modelling complex nonlinear dynamic engineering 
systems. 

 
Table 3 Long-term prediction performance (RMSE) 

of the two neural models 
  

Model Data set 50  
gen 

100 
 gen 

Modelling 13.4718 13.0780  
Model 1 Valid-1 16.3923 13.4783 

 Valid-2  12.0873 10.9220 
Modelling 16.6533 17.6698  

Model 2 Valid-1 14.9589 17.6416 
 Valid-2 13.6269 11.8767 
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