

A NOVEL GA-BASED NEURAL MODELLING PLATFORM
FOR NONLINEAR DYNAMIC SYSTEMS

Jian-Xun Peng and Kang Li

School of Electrical & Electronic Engineering
Queen’s University Belfast, UK

Abstract: A novel genetic algorithm based neural modelling platform is developed for
nonlinear dynamic systems. In this platform, the selection of neural inputs, optimisation
of the neural network structure and identification of the optimal connection weights are
formulated as an integrated optimisation problem. Both one-step-ahead and long-term
prediction performances of the neural model are incorporated into the performance
index. Genetic algorithms are then used for this mixed integer nonlinear optimisation
problem. The platform provides user-friendly environment that gives users maximal
flexibility in defining the modelling project and detailed visualisations of the
optimisation process. This platform is then applied to the NOx emission modelling and
prediction of a coal-fired power generation plant to confirm its effectiveness. Copyright
© 2005 IFAC

Keywords: Genetic algorithms, neural networks, optimisation, neural modelling,
nonlinear system, software development, power generation

1. INTRODUCTION

Neural networks have been widely used in nonlinear
dynamic system modelling due to their universal
approximation ability and simple model structure.
Several issues in neural modelling have been
examined (Anders and Korn, 1999; Li, Thompson
and Peng, 2004; Yu, Gomm, and Williams, 2000),
but they have not been fully exploited as a whole.

The first issue is the dilemma between the short-term
and long-term prediction performances of a neural
model. Many training algorithms for neural
modelling are based on a criterion which assesses the
one-step-ahead prediction performance of the neural
model. In practice, a one-step-ahead prediction
model may carry little system information, since the
sampling rate in a process may be high enough that
the immediate past outputs give the most significant

contributions to the cost function. Therefore the
contributions of other useful variables become much
less important and indistinctive. To avoid this
situation, the long-term prediction performance is
often preferred to be a part of the performance index
to assess the neural model. However most batch
algorithms cannot be directly used to effectively
train external recurrent neural networks against a
performance index taking into account the long-term
prediction performance.

The second issue is how to control the complexity of
a neural model (Anders and Korn, 1999). It is well
understood that although a network having more
hidden neurons are better in fitting the training data,
a complex network is often poor in predicting unseen
data. The popular methods are to prune redundant
hidden nodes based on some information criteria or
to regularise the network training by adding

additional term on the cost function to penalise large
weights.

The third important issue is to select the neural
inputs (Yu, Gomm, and Williams, 2000). To feed the
neural model with all possible variables in dynamic
forms often produce a complex neural network with
poor generalisation performance. The existing
methods are to select possible neural inputs from
multiple local linear models.

Although the three issues have been addressed
separately in the literature, they are rarely considered
as a whole, partly due to the complexity of the
problem and partly due to the lack of powerful
computation tools. In this paper the three issues are
dealt with in one integrated framework with the
support of a powerful optimisation tool.

This paper is organised as follows. In section 2, an
optimisation criterion combining both the one-step-
ahead and the long-term prediction performance of
the neural model is proposed. Neural input selection,
network structure optimization, and optimal
connection weight identification are formulated as
one problem. Then a scheme is proposed to solve the
integrated optimization problem using genetic
algorithms (GAs). In section 3, an integrated
software platform is described. This platform is
applied to model NOx emissions from a coal-fired
power generation plant in section 4 and concluding
remarks are presented in section 5.

2. FORMULATION OF THE NEURAL
NETWORK OPTIMISATION PROBLEM

To simplify the notation, MISO systems are
considered in this paper. A discrete nonlinear
dynamical system of m inputs and single output can
then be represented as:

))lt(

,),1t(),lt(y,),1t(y(f)t(y

u

y
−

−−−=

u

u LL
 (1)

where t is the time instant, is the output,

 the input vector,
R∈)t(y

)]t(u,),t(u[)t(m1 L=u)(f • is
some nonlinear function, and lu and ly are the
maximal orders for input and output variables.

Suppose a neural network model is used to
approximate the nonlinear system (1) with one or
more hidden layers using feed-forward structure. All
system input variables in past time instant,

, and the system
output in past time instant, , are

fed into the network to generate the network output
 which is the system output in current time

instant. Let the number of hidden layers as h, and
then the neural network can be formularized as

follows:

m,,1i),lt(u,),1t(u uii LL =−−
1t(y −

)t(y

)lt(y,), y−L

 (2)


























∑+=

∑+=

=

−

=

kn

1j

)1k(
j

)k(
i~j

)k(
i~0

)k(
i

)k(
i

hn

1i

)h(
ii0

)t(xww)t(x

)t(xww)t(y

φ

 h,,1k L=
where

 denotes the input layer to the network; ,
)]lt(u,),1t(u,),lt(u,),1t(u

),lt(y,),1t(y[]x,,x[

ummu11

y
)0(

0n
)0(

1

−−−−

−−=

LLL

LL

kn
h,,1k L= denotes the number of neurons in the k’th

hidden layer; ,)k(
ix kn,,1i L= is the output of the

i’th neuron in the k’th hidden layer; ,
is the output weight from the i’th neuron of the last
(the h’th) hidden layer to the output and w is the

output bias; , i

iw hn,,1i L=

0
)k(
i~jw kn,,1L= , , is the

connection weight from the the j’th neuron of the (k-
1)’th hidden layer to the i’th neuron of the k’th
hidden layer and is the bias; ,

1kn,,1j −= L

)k(
i~0w)k(

iφ

kn,,1i L= , denotes the activation function of the
i’th neuron of the k’th hidden layer;

denote the input signals to the

network and

)0(
n

)0(
1 0

x,,x L 0n

uy0 mlln += .

In general, activation functions are selected ‘a priori’
for traditional neural networks, e.g. hyperbolic
tangent or Gaussian, etc. Given the activation
functions, the network can be formulated as a
function of the connection weights and biases, which
are to be optimised against a criterion. Now suppose
a set of data of N samples, denoted as Ω , is
obtained, and the neural network needs to be trained
over the data set, i.e. to minimise a cost function,
normally the least squares:

()∑ −= =
∈

N
1t

2)1(*)]t(y)t(ŷ[minarg
KRW

W (3)

where W denotes all the weights and biases,
including and , and K denotes the total

number of the weights together with biases,

)k(
i~jw iw

 (4) ∑ += = +
h

0k 1kk n)1n(K

with denoting the number of network outputs,
here

1hn +

n 1h 1=+ ; { ,)t(y N,,1t L= } is the output

series and { ,)t()1ŷ(N,,1t L= } are network
predictions, where the superscript "(1)" indicates that
they are the one-step-ahead predictions of the system
output.

Now that the output weights are given in (8), the task
to optimise the network structure and the connection
weights is then to identify the best selection vector
and a parameter vector that are associated with the
selected selection vector, excluding the output
weights w. This parameter vector excluding the
output weights is defined as:

To train the network using (3), the network structure,
including the number of hidden layers and the
number of neurons in each hidden layer, has to be
predetermined. Furthermore if all possible neural
inputs are used, the network will inevitably get more
complex. In this paper, optimisation of the network
structure and identification of the optimal connection
weights are formulated as one optimisation problem
- Suppose all the inputs ’s to the network and

the outputs ’s from all the hidden neurons are
all referred to as signal channels, then the total
number of signal channels is

)0(
ix

)(k
ix

]w,,w,

,w,,w,w,,w[~

)h(
n~n

)h(
n~0

)1(
2~n

)1(
2~0

)1(
1~n

)1(
1~0

h1hh

00

−

=

LL

LLW
 (9)

The number of elements in vector W~ is
∑ += = −

h
1k k1k n)1n(K~ .

∑ += = +
h

0k 1kk n)1n(M (5)

Given the above definitions, a one-to-one mapping
can be established between the networks and the
vector pair (S, W), i.e. a vector pair (S, W)
uniquely specifies a neural network. The least
squares criterion index in (3) can be reformulated as

where is the number of network outputs, and
in this paper, =1 for single-output networks.
Each signal channel in the network is tagged with a
Boolean variable, say for , which is called
selection variable. Obviously we have M selection
variables for the M signal channels. If then

the signal channel is enabled (or being
selected) and the weights connecting to the signal
channel are also enabled, otherwise the signal
channel and its associated weights in the network are
disabled (or unselected). Then network (2) can be
reformulated as

1hn +

1hn +

)k(
is

)(k
ix

)k(
ix

1s)k(
i =

[]yXXXXIy

WS
T
h

1
h

T
hh

T

N
1t

2)1()1(

)(

)]t(y)t(ŷ[),(J
−

=

−=

∑ −=
 (10)

where the criterion index is defined as the sum
squares of one-step-ahead prediction errors. And the
network input selection, structure optimization and
identification of optimal connection weights are
performed using

)1(J


























∑+=

∑+=

=

−−

=

kn

1j

)1k(
j

)1k(
j

)k(
i~j

)k(
i~0

)k(
i

)k(
i

hn

1i

)h(
i

)h(
ii0

)t(xsww)t(x

)t(xsww)t(y

φ

h,,1k L= (6)

 ((11))},(Jmin{arg),)1(** WSWS =

 s.t. and W . K}1,0{∈S MR∈

To control the complexity of neural networks, an
additional constraint is imposed on the network
optimisation, i.e. the total number of neural inputs
and hidden neurons is restricted, which is denoted as
C, i.e. C)(sum S= . The constrained optimization
problem is then reformulated as

All the M selection variables then can be re-written
using a vector,

M)h(
n

)h(
1

)0(
n

)0(
1 }1,0{]s,,s,,s,,s[

h0
∈= LLLS (7)

MK

)1(**

,C)(sum,}1,0{.t.s

)},,(Jmin{arg),(

RWSS

WSWS

∈=∈

=
 (12)

which is referred to as the selection vector.
Obviously the selection vector defines the actual
network structure.

where K and M are dimensions of vector S and M,
which are defined in (4) and (5), respectively; C is a
predetermined constant integer, which restricts the
total number of neural inputs and hidden neurons. C
is an index relating to the neural model complexity
therefore its choice should reflect the complexity of
the problem. Alternatively, C could be incorporated
into the performance index.

To minimize the least squares index (3), the output
weights can always be

explicitly expressed as

T
n10]w,,w,w[

h
L=w

yXXXw T

h
1

h
T
h)(−= (8)

T)]N(y,),1(y[L=y , ,],,[)h(

hn
)h(

0h xxX L= In (12), uses the one-step-ahead
prediction errors. As pointed out in the introduction
section that, in modelling nonlinear dynamic systems
however the long-term prediction performance of a

),(J)1(WS

h
T)h(

i
)h(

i
)h(

i n,,1,0i,)]N(x,),1(x[LL ==x ,

and . N,,1t,1)t(x)h(
0 L==

As shown in Fig. 1, each chromosome has C integer
genes and M floating-point genes; C and M have
been defined above. In a GA search, it is always
ensured that C1,..,i],1K,0[I i =−∈ (K is the length
of the vector S) and ji II ≠ for .
Each chromosome is tagged with a positive number,
called fitness. Fitness is a measure of the
performance of a solution coded in chromosome. In
this paper, defined in (15) is used as the
raw fitness of a chromosome. To adjust the
competition scale between different chromosomes in
a population, fitness ranking is often applied.

C,,1j,i,j L=≠i

),(J WS

model is often more important. To produce a neural
model with good long-term prediction performance,
the optimisation criterion defined in (12) has to be
modified. Given a network defined by the vector pair
(S, W) with its output weights determined in (8), its
long-term predictions is defined as


















−−−−

−−=

=













∑+=

∑+=

=

−−

=

)]lt(u,),1t(u,),lt(u,),1t(u

),lt(ŷ,),1t(ŷ[)]t(x,),t(x[

h,,1k,xswwx

)t(xsww)t(ŷ

ummu11

y
)l()l()0(

0n
)0(

1

kn

1j

)1k(
j

)1k(
j

)k(
i~j

)k(
i~0

)k(
i

)k(
i

hn

1i

)h(
i

)h(
ii0

)l(

LLL

LL

Lφ

Based on the above analysis, GA-based C++
software has been developed as an integrated
platform for neural network based nonlinear
dynamic modelling. The main characteristics of the
software are:

(13)

In this long-term prediction model, past values of the
system output fed into the neural networks have been
replaced with their predicted values by the neural
network. The sum squares of the long-term
prediction errors is defined as

1) Maximal flexibility for project definition. The
GA based neural modelling is initialised by a project
definition file. Users can define GA parameters, the
system inputs and outputs, training and validation
data sets, the network structure, and the criterion to
be minimised etc.

∑ −= =
N

1t
2)l()L()]t(y)t(ŷ[),(J WS (14)

2) Both homogenous and heterogeneous networks
are supported. An activation function pool is
designed to enable users to uses any of the functions
listed for the hidden and output nodes. The software
also supports user-defined activation functions. In
addition, user defined activation functions are
allowed to contain any parameters to be optimised.

Now integrated optimisation criteria for the neural
network can be defined as

)/()],(),([),()()(
l1

L
l

1
1 aaJaJaJ ++= WSWSWS

 (15)

where are predefined weights for the one-
step-ahead and long-term prediction performance of
the model. Finally the neural network optimisation
problem can be formulated as

0a,a l1 ≥

1 C C+1 hnMC −+ C+M

I1 … IC)1(
1~0w …

)h(
n~0 h

w …
)h(

n~n h1h
w

−

MK

**

,C)(sum,}1,0{.t.s

)},,(Jmin{arg),(

RWSS

WSWS

∈=∈

=

 (16) Fig. 1 Chromosome encoding scheme

Optimizer

Modelling Element
Manager

Interface

Network(Model) Set

Modeling Data Sets

System Variable Group

Neuron Pool

Parameter Pool

Communication Interface with MATLAB

Menu, Dialog-box,
& Controls

Data Set View

Population View

Validation View

MATLAB Source
Code View

Record List View

GA Optimizer
(Population)

Chromsome View

MATLAB
Source Code

Generator

Project Definition & Initialization

Project Definition File

Activation Functions
Construction Functions

Sub-Network(Model)
Assesser

Solution Recorder
Record-conditions

Data Pre-processor

Sensitivity View

Index Fig. View

Criterion & Index Manager

Obviously (16) is a real-integer mixed hard problem.
Conventional analytic methods often fail to search
the optimal solution for such problems. As a
stochastic optimisation tool, the genetic algorithm
has ever been used to train neural networks (Blanco,
Delgado and Pegalajar, 2001). In this paper, it will
be used for the above mixed optimisation problem.

3. NEURAL NETWORK OPTIMIZATION
PLATFORM USING GENETIC ALGORITHMS

To solve an optimization problem using genetic
algorithms, a solution-encoding scheme is first
required, through which each solution to the problem
is represented as a chromosome. With regard to the
optimization problem (16), a solution comprises two
parts, i.e. a boolean selection vector S and a real-
valued parameter vector W. The scheme of encoding
the solutions is illustrated in Fig. 1.

Fig. 2. Software structure

3) A data pre-processing module is developed,
which can be used to perform data normalisation.

4) Multiple sets of data may be specified for both
network optimisation and validation. Different
format of data sets are supported, e.g. MATLAB
files (*.m), ASCII text data files (*.txt) and binary
data files (*.dat).

5) The C++ software has interfaced with MATLAB,
which enables the software to exchange data with a
MATLAB workspace and to call MATLAB
functions.

6) A MATLAB source code generator is designed.
It can output neural models in MATLAB code in
order that the results produced in the software can be
reproduced in the MATLAB using the generated
MATLAB codes.

7) Different “views” are designed to monitor the
evolution process in text or graphic form, for
examples, to visualize the evolution process, the
validation results, and parameter sensitivity.

Fig. 2 summarises the software structure and
information flow between different modules.

4. APPLICATION AND RESULTS

The proposed neural modelling method was applied
to model the NOx emission in a cyclic thermal
power plant with two generating units (Li,
Thompson and Peng, 2004). Each unit has a dual
fired (oil or coal) drum boiler and produces full load
300 MWe with oil firing or 200 MWe with coal
firing. There is one burner box on each corner. There
are four burner boxes, one at each corner that will
supply the furnace with oil or pf coal. All of the
sections in each burner box tilt in unison through
±25°, relative to the horizontal. This is achieved by
means of a burner tilt mechanism.

Coal is the major source of fuel. Coal is taken from
the bottom of a coal bunker, pulverised and then
entrained in a hot primary airflow. Primary air dries
and carries the pf coal to the burners. Each corner of
the furnace houses a burner box and a separated
overfire air (SOFA) box, which admit fuel and
secondary air streams into the furnace. These streams
are directed at tangents to imaginary firing circles in
the centre of the furnace. The tangential firing
creates turbulence in the combustion area that
ensures the thorough mixing of fuel and air streams
necessary for complete combustion. Low momentum
burners are employed to achieve a longer flame path,
leading to reduced flame temperatures.

Plant data covering about 6-day’s operation period
were obtained. The following data sampled each
minute were available: NOx): Mass flow of fuel

 (Kg/s); Mass flow of air m (Kg/s),

specifically, mass flow of primary air and mass

flow of secondary air (Kg/s); Tilting position of
burners

fm a

pam

sam
θ (degree).

e=

Table 1 Statistics of the NOx emissions (ppm)

 Data set 1 Data set 2 Data set 3

Mean 306.80 296.92 298.70
STD 21.92 20.85 17.40

[Parameters]
 Parameters 01 = w01: 02, [-1,1]
[Neural Network]
 Input Layer = [mf, mpa, msa, tilt], 6
 Output Layer = [NOx]
 Hidden Layer 1 = [5 * dllMLEXP], 5
 Input Preprocessing = Normalisation {Period 1, Period 2, Period 3}
[Extended Index]
 Criterion = 0.2 * NMSE1 (NOx, { Period 1 } | {Period 1}) + \\
 0.8 * NMSEL (NOx, { Period 1 } | {Period 1})
 Validation 1 = NMSEL(NOx, {Period 2, Period 3 } | { Period 1 })
 Validation 2 = NMSEL(NOx, {Period 1, Period 2, Period 3 } | {Period
2})
 Validation 3 = NMSEL(NOx, {Period 1, Period 2, Period 3 } | {Period
3})
 Evolution Record = {Validation 1, Validation 2, Validation 3}

Fig. 3 Definition of the network set, the criterion and
validation indices in the project definition file

The normalized data were split into three sets (data
set 1 with 2300 samples, data set 2 with 3000
samples and data set 3 with 2500 samples). The
mean value and standard deviations for the NOx
emissions in the three data sets are listed in Table 1.

Of the three data sets, data set 1 is used for neural
model optimisation, data set 2 and 3 for model
validation. A one-hidden layer neural network with
activation function was developed.

In the chromosome representation, all the system
inputs and the NOx output with an order of 4 were
coded as the neural network inputs, and 5 hidden
neurons were also coded into the chromosome.
These network inputs and hidden nodes constituted
the segment of integer genes in the chromosome.
The genetic algorithm was then used to select a
subset of these integer genes and to optimise their
associated floating genes to generate a solution to the
optimisation problem.

))bx/(+(cϕ

The neural network structure defined in the project
definition file is shown in Fig. 3. In Fig. 3, field
[Parameters] defines the parameters in the activation
functions to be optimised. In the file, two
parameters, named w01 and w02, are defined within
range [-1, 1]. They represent in the activation
functions

b,c
ϕ . In field [Neural Network] in Fig. 3,

input layer contains all system input variables in
time, and it is required that at least 6 of these inputs
are selected. ‘dllMLEXP’ stands for ϕ . NMSE1
and NMSEL in Fig. 3 are build-in functions for
calculating normalized mean squares of one-step-

ahead and long-term prediction errors. The software
interface for neural modelling of NOx emissions is
illustrated in Fig. 4.

The neural model optimised against the performance
index defined in Fig. 3 (Model 1) is a 6-5-1 neural
network comprising 6 inputs and 5 hidden nodes.
The GA parameters are: one population with a size
of 400, crossover rate 0.95, and mutation rate 0.05.

Finally, to illustrate the flexibility of this modelling
platform, another 6-5-1 neural model was optimised
against the NMSE1 only (Model 2), i.e. NMSE1 is
set to 0, and NMSEL is set to 0 in Fig. 3. The GA
parameters are kept the same.
 Fig. 4 Layout of the software interface

 Table 2 Short -term prediction performance (RMSE)
of the two neural models

5. CONCLUSION
Model Data set 50

gen
100
 gen

Modelling 6.7665 6.7072
Model 1 Valid-1 4.8149 4.7035

 Valid-2 4.5262 4.5044
Modelling 6.1864 6.1763

Model 2 Valid-1 4.2435 4.2488
 Valid-2 4.6641 4.2321

A novel GA-based neural modelling platform has
been developed. Using this platform, the selection of
neural inputs, optimisation of the neural network
structure and identification of optimal connection
weights can be formularized as one integrated
optimisation problem. Both one-step ahead and long-
term prediction performances of the neural models
are incorporated into one fitness function for GA
optimisation. This platform has then applied to
model the NOx emissions from a thermal power
plant to confirm the effectiveness and flexibility in
modelling complex nonlinear dynamic engineering
systems.

Table 3 Long-term prediction performance (RMSE)

of the two neural models

Model Data set 50
gen

100
 gen

Modelling 13.4718 13.0780
Model 1 Valid-1 16.3923 13.4783

 Valid-2 12.0873 10.9220
Modelling 16.6533 17.6698

Model 2 Valid-1 14.9589 17.6416
 Valid-2 13.6269 11.8767

ACKNOWLEDGEMENTS

Dr K. Li wishes to acknowledge the financial
support of the UK Engineering and Physical
Sciences Research Council (EPSRC Grant
GR/S85191/01).

Table 4 Average short and long-term prediction
performance (RMSE) of the two neural models

REFERENCES

Anders, U., O. Korn (1999). Model selection in

neural networks. Neural Networks, vol. 12, pp.
309-323.

Model Data set 50
gen

100
 gen

Short term 5.3837 5.3176 Model 1
 Long term 14.2721 12.5912

Model 2 Short term 5.0183 4.8920
 Long term 15.0784 16.0306

Blanco, A., M. Delgado and M. C. Pegalajar (2001).
A real-coded genetic algorithm for training
recurrent neural networks. Neural Networks, 14,
93-105.

Goldberg, D. E. (1989). Genetic Algorithms in
Search, Optimization, and Machine Learning.
Addison-Wesley Publishing Company, Inc.

The short-term and long-term prediction
performances of the two neural models over the
three data sets, when optimised against the two
different performance indexes for 50 and 100
generations, are given in tables 2 and 3. The average
model performance over the data sets is summarised
in table 4. The model performance - RMSE stands
for the rooted mean of sum squared predicted errors
(RMSE).

Li, K., S. Thompson and J. Peng (2004). Modelling
and prediction of NOx emission in a coal-fired
power generation plant. Control Engineering
Practice. 12, 707-723.

Yu, D. L., J. B. Gomm, D. Williams (2000). Neural
model input selection fro a MIMO chemical
process. Engineering Application of Artificial
Intelligence, vol. 13, pp. 15-12, 2000.

	School of Electrical & Electronic Engineering
	C
	
	
	
	ACKNOWLEDGEMENTS
	REFERENCES

