
APPLYING THE UNIFIED PROCESS TO LARGE-SCALE ONTOLOGY BUILDING

Michele Missikoff, Roberto Navigli

Consiglio Nazionale delle Ricerche , Roma Italy, missikoff@iasi.cnr.it
Università di Roma “La Sapienza”, Roma, Italy, navigli@di.uniroma1.it

Abstract: Ontologies are the backbone of the Semantic Web, a semantic-aware version
of the World Wide Web. To the end of making available large-scale domain
ontologies, effective and usable methodologies are needed to facilitate the process of
Ontology Building. Many of the methods proposed so far only in part refer to well-
known and widely used standards from other areas, like software engineering and
knowledge representation. In this paper we present UPON, a methodology based on
the adaptation to Ontology Building of the Unified Software Development Process
developed by the Object Management Group. The approach provides interesting
insights from both software engineering and ontology construction. A comparative
evaluation with other methodologies, as well as the results of its adoption in the
context of the European Interop Network of Excellence and Athena Integrated Project,
are also discussed. Copyright © 2005 IFAC

Keywords: knowledge engineering, software engineering, knowledge representation,
knowledge acquisition, documents, domain analysis.

1. INTRODUCTION

Ontologies, i.e. semantic structures encoding concepts,
relations and axioms for inference, are the backbone
of the Semantic Web (Berners-Lee et al., 2001), a
semantic-aware version of the World Wide Web. The
availability of large-scale domain ontologies is a
critical factor for achieving semantic services, and in
particular interoperability among systems.
Unfortunately the community has not yet reached a
de facto consensus on one or more standard methods
for building large-scale ontologies. This seems to be
a case where a field of AI could benefit from
borrowing the main, well-established characteristics
of a widely used software engineering process, the
Unified Software Development Process (Jacobson et
al., 1999).
In this paper, we present UPON, a novel approach to
large-scale ontology building based on the Unified
Process (UP). As a result, on one side, the adoption
of the UP and the Unified Modeling Language
(UML) makes ontology building an easier task for
modellers familiar with these techniques. On the
other side, we show how well each phase of ontology

building fits in the UP, thus guiding the process
through a number of consolidated steps aiming at
ontology development.
The paper is organized as follows: section 2
discusses previous work in this area, in section 3 we
present our approach to ontology building, in section
4 we provide a two-fold evaluation of UPON, the
first by comparison with other methodologies, and
the second in the context of a European Network of
Excellence on interoperability, Interop1, and the
Athena2 Integrated Project. Finally, in section 5 we
provide conclusions and future work.

1 “Interoperability Research for Networked
Enterprises Applications and Software”, Network of
Excellence 508011, 6th European Union Framework
Programme (FP) - http://www.interop-noe.org.
2 “Advanced Technologies for Interoperability of
Heterogeneous Networks and their Application”,
Integrated Project 507849, 6th EU FP.

2. RELATED WORK

Among the first and most cited contributors to
ontology building, Gruber (1993) discusses some
basic ontology design criteria (clarity, coherence,
extendibility, minimal encoding bias and ontological
commitment). Uschold and Gruninger (1995)
provide a skeletal methodology based on the
identification of purpose, the construction of the
ontology, its evaluation and documentation.
Gruninger and Fox (1995) point out the need of
establishing requirements with the aid of competency
questions.
These works introduce the main guidelines for
building an ontology, constituting the basis for the
subsequent proposals.
A complete framework for ontology development,
METHONTOLOGY, is presented by Fernández et al.
(1997). The ontology development process is
composed by the following phases: specification,
conceptualization, formalization, integration,
implementation, maintenance. Its life cycle is based
on evolving prototypes and specific techniques
peculiar to each activity. Other activities, like
control, quality assurance, knowledge acquisition,
integration, evaluation and documentation are carried
out simultaneously with the ontology development
activities.
With a strong emphasis on knowledge maintenance
and management, Sure et al. (2004) propose On-To-
Knowledge, an ontology development process
consisting of five main phases: feasibility study,
kick-off, refinement, evaluation, application and
evolution. Each phase consists of a number of sub-
steps. The process is well detailed, including pre- and
post-development phases.
Other approaches, often tied to industry or research
projects, include the methods used for building CyC,
SENSUS, and KAKTUS (OntoWeb deliverable,
2002). For an accurate description of ontology
building methodologies the interested reader can
refer to Corcho et al. (2003).
Unfortunately the ontology community has not yet
reached a de facto consensus on the above mentioned
methodologies paired with an intuitive modeling
language. In the rest of the paper we propose, discuss
and assess an approach to the problem.

3. UPON: UNIFIED PROCESS FOR ONTOLOGY

BUILDING

In this section we present UPON (Unified Process
for ONtology building), an incremental methodology
for ontology building. The process we propose stems
its characteristics from the Software Development
Unified Process, one of the most widespread and
accepted methods in the software engineering
community, and uses the Unified Modeling
Language (UML) to support the preparation of all the
blueprints of the ontology project3. UML has been

3 Notice that in the following we apply UPON to the
construction of an ontology, rather than to the

already shown to be suitable to this end (Guizzardi et
al., 2002), confirming its nature of rich and
extensible language.
What distinguishes the UP and UPON from the other
processes, respectively for software and ontology
engineering, is their use-case driven, iterative and
incremental nature.
UPON is use-case driven in that it aims at producing
an ontology with the purpose of serving its users,
both humans and automated systems (e.g. semantic
web services, intelligent agents, etc.). These
interactions take place through use cases that drive
the exploration of all aspects of the ontology.
The nature of the process is iterative because each
iteration allows the designer to concentrate on part of
the ontology being developed, but also incremental,
since the ontology is more and more detailed and
extended.
The process repeats over a series of cycles making up
the life of the ontology. Following the UP, in UPON
we have cycles, phases, iterations and workflows.
Each cycle consists of four phases (inception,
elaboration, construction and transition) and results
in the release of a new version of the ontology. Each
phase is further subdivided into iterations. During
each iteration, five workflows (described in the next
subsections) take place: requirements, analysis,
design, implementation and test. Workflows and
phases are orthogonal in that the contribution of each
workflow to an iteration of a phase can be more or
less significant: early phases are mostly concerned
with establishing the requirements (identifying the
domain, scoping the ontology, etc.), whereas later
iterations result in additive increments that eventually
bring to the final release of the ontology (Figure 1).

Inception

Requirements

Analysis

Design

Implementation

Test

Iteration 1 Iteration 2 Iteration n-1Iteration n
...

w
or

kf
lo

w
s

cycle

Elaboration
 Construction

Transition

phases

Fig. 1. An example of the workflow contribution to
iterations of different phases in UPON (and UP).

In the following subsections each ontology workflow
is described in detail.

3.1 The Requirements Workflow.

Requirements capture is the process of specifying the
knowledge to be encoded in the ontology. The
essential purpose of this workflow is to reach an
agreement between the modellers, the knowledge
engineers, and the final users (Jacobson et al., 1999).

process of building ontologies, that is the blueprints
refer to the ontology being built.

During the first meetings, ontology modellers and
domain experts establish the guidelines for building
the ontology by: (i) determining the domain of
interest, (ii) defining the purpose and scope, and (iii)
identifying the competency questions and the related
use cases.

Determining the domain of interest. Delimiting the
domain of interest is a fundamental step to be
performed (Uschold and Gruninger, 1995), allowing
to focus on the appropriate fragment of reality to be
modelled. If the domain is huge, one or more sub-
domains may also be determined.

Defining the purpose (or motivating scenario). The
reason for a new ontology, its intended uses, and the
kinds of users must be established. Common
motivating scenarios provide a better understanding
of the domain of interest and foster interoperability
between systems and/or users.

Defining the scope. The scope is the extent of the
ontology and consists of the identification of the
most important concepts to be represented, their
characteristics and granularity. Selecting a
representation means making a set of ontological
commitments, bringing some part of the domain into
focus at the (required and expected) expense of
blurring other parts. These ontological commitments
are not incidental: they provide a guidance in
deciding what aspects of the domain are relevant and
what to ignore.
Following Guarino et al. (1994), the ontological
commitment can be seen as “a mapping between a
language and something which can be called an
ontology”. This allows one to preliminarly identify
terms as expressions of ontology concepts.
Usually at this stage modellers have only a vague
idea of the role each concept will play, i.e. the
semantic interconnections, within the ontology. If
necessary, they can annotate these ideas for further
development during subsequent iterations.

Identifying the competency questions. Competency
questions are questions an ontology must be able to
answer (Gruninger and Fox, 1995). They are
identified through interviews with domain experts,
brainstorming, an analysis of the document base
concerning the domain, etc. The questions do not
generate ontological commitments, but are used
during the test workflow to evaluate the ontological
commitments that have been made.

Use-case identification and prioritization. We
propose to take into account competency questions
through use-case models. A use-case model serves as
an agreement between the users (i.e., who requires
the ontology) and the modellers, and contains a
number of use cases. In the context of ontologies,
use cases are simply paths of knowledge through the
ontology to be followed for answering one or more
competency questions. Although they are to be
specified during the analysis and design workflows,
it is necessary to prioritize and package (i.e. group)

them during requirements. The result will help
dictate which use cases the team should focus on
during early iterations, and which ones can be
postponed.
An example of use-case model applied to
competency questions is reported in Figure 2.

Competency Questions:
Which actors integrate heterogeneous data?
Who acquires knowledge?
Use-case model:

Data ExchangeData Integration

ebXML
Data Integration

«includes»

Knowledge
 Engineer

Knowledge
Acquisition

Fig. 2. Some competency questions and an excerpt of
the use-case model.

The outcome of the requirements workflow is a first
document including the results of the above steps.
Figure 2 shows part of the resulting draft document
developed in the context of the Interop Network of
Excellence on interoperability. The document is
extended and detailed during subsequent iterations,
as the whole picture becomes clearer.

3.2 The Analysis Workflow.

Conceptual analysis consists of the refinement and
structuring of the ontology requirements identified in
previous section. The ontological commitments
derived from the definition of scope are extended, by
reusing existing resources and through concept
refinement.
The description of this phase adheres to the view of
linguistic ontology in which concepts, at least the
lower and intermediate levels, are anchored to texts,
i.e. they have a counterpart in natural language.

Considering reuse of existing resources. Reuse
concerns internal legacy resources as well as external
resources requiring possible refinements and
extensions, like interviews, documents, standards
(e.g. ebXML, RosettaNET, OAGIS, etc.), glossaries,
thesauri, computational lexicons and available
ontologies. Compared to building the ontology from
scratch, populating part of it with existing resources
can save a great deal of time and produces an
ontology with higher interoperability features. Reuse
always implies some kind of integration and
adjustment (merging, mapping, reinterpretation, etc.).

Identification of relevant terms. During conceptual
analysis, domain modellers identify the linguistic
realization of the entities involved in the domain of
interest starting from the work performed during the
requirements capture. The result of this step is a plain
list of terms. Notice that a domain term characterizes
a domain concept in an implicit way. Making this
knowledge explicit is an important effort to be
accomplished partly during analysis (in the next step)

and partly in the design workflow. Table 1 shows
part of the terminology captured in the Interop
project, by analysing the document base.

Table 1 Plain terminology.

business entity design phase legacy system
business object domain expert resource
data integration interoperability software agent
deployment knowledge source …

Definition of concepts. Starting from the plain term
list, unnamed relations can be identified implying
some kind of conceptual correlation or interaction
between the concepts evoked by terms in the list.
This results in the Class (or Concept) Responsibility
Collaborator (CRC) model, well-known in the
software engineering area. This model is a collection
of standard index cards, each divided into three
sections: the concept name, its responsibilities (what
an instance of that concept knows or does) and its
collaborators (concepts it interacts with to fulfill its
responsibilities). Each card can be further enriched
with a definition in natural language and the
identification of a top-level (or meta-level)
“category” for the defined concept (e.g. entity for
Business Entity, process for Data Integration, actor
for Software Agent, etc.). These “categories” include
the major ontological types (usually concepts either
in the top ontology, resulting from various
permutations of very basic facets, or constituting an
established meta-ontology (Uschold and Gruninger,
1995; Missikoff and Taglino, 2002)). An example of
extended CRC card is shown in Figure 3. Notice that
the textual definition can be influenced by the
concept responsibilities or vice-versa. Synonyms, i.e.
terms expressing the same meaning (much as synsets
in WordNet (Fellbaum, 1998)), are grouped into the
same card. For instance, the terms ontology
construction and ontology building convey the same
meaning, so they can be grouped in order to
represent a single concept.

Concept name: Knowledge Engineer <Actor>
Responsibilities:
interview experts
acquire knowledge

Collaborators:
Domain Expert
Knowledge Source

Definition: A person who communicates with
experts in order to acquire relevant knowledge.

Fig. 3. Part of an extended CRC card for Knowledge
Engineer.

The CRC model can be represented in a graphical
form with a UML collaboration diagram (called
robustness) where entities, actors and processes are
identified with UML standard graphical symbols
(refer to Figure 4 for an example).
According to the UP methodology, collaboration
diagrams suggest that concepts can be grouped into
packages, aiming at organizing the development in
mini-projects at different iterations.
The outcome of this workflow is the analysis model,
including the packages of concepts and collaboration

diagrams. A portion of the analysis model for the
Interop project is reported in Figure 4.

Analysis Model

.

.

.

Interoperability

Management

Entity Actor ProcessLegenda:

Knowledge

Domain
 Expert

Knowledge
 Engineer

Knowledge
Acquisition

Knowledge
 Source

Domain
 Expert

Knowledge
 Source

Knowledge
 Engineer

Knowledge Acquisit ion
 Robustness

Fig. 4. An excerpt of the analysis model.

Refining the concepts and their relations. At this
stage, the gradual and incremental passage from
terms to concepts is made clear by the formal
definition of relations between sets of synonyms
identified in the previous workflow.
As a first structuring step, concepts can be organized
in a taxonomic hierarchy through generalization (the
kind-of or is-a relation). Three main approaches are
known in the literature (Uschold and Gruninger,
1996): top-down (from general to particular), bottom-
up (from particular to general) and middle-out (or
combined). The combined approach consists in
finding the salient concepts and then generalizing
and specializing them. This approach is considered to
be the most effective because concepts “in the
middle” tend to be more informative about the
domain.
The resulting taxonomy can now be extended with
other relations derived from the responsibilities of
each concept, as established during conceptual
analysis.
The outcome of this step is a UML class diagram,
using generalization (kind-of), aggregation (part-of)
and association relations. A UML association
relation can be labelled with a predicate and allows
to represent the whole set of relations needed for the
ontology being built (see Figure 5 for an example).

Knowledge

Knowledge
Engineer

Domain
Expert

Knowledge
Source

Source

interview

acquire

Knowledge

Information

acquire

Document

Standard

Domain
know

Fig. 5. A portion of the class diagram.

Use-case realization. Use cases identified during the
requirements workflow can be realized with the aid
of UML sequence and collaboration diagrams.
These diagrams emphasize respectively the sequence
and the organization of responsibilities between
concepts required for the realization of a use-case. In
Figure 6 a sequence diagram is reported.

The outcome of conceptual design is the design
model, including class and interaction diagrams (i.e.
sequence and collaboration diagrams).

: Knowledge
Source

interview

acquire

: Domain
Expert

: Knowledge
Engineer

: Knowledge
Source

: Knowledge
Source

acquire
sources

sources

Fig. 6. Sequence diagram of the Knowledge
Acquisition use-case (from Figure 2).

3.4 The Implementation Workflow.

The purpose of this workflow is to formalize the
ontology in a language and to implement it in terms
of replaceable components. Components implement
concepts from the design workflow and follow the
established grouping into packages (i.e. ontology
portions). Use-case prioritization from the
requirements workflow and packaging from all the
previous workflows allow component engineers to
work on different parts of the ontology to be
integrated at subsequent iterations.
Components can be written down in a variety of
languages and notations. The adoption of a certain
formalism is appropriate as long as it conveys the
adequate expressiveness and it allows an easy reuse
within the community. As a result of a long
standardization effort, the Ontology Web Language
(OWL4) is the main candidate for encoding an
ontology to be used on the Semantic Web.
The outcome of this workflow is the implementation
model, including packages of implemented
components, each encoding a portion of the
ontology.
Figure 7 reports an excerpt of the implementation
model for the Interop project.

Implementation Model

...

Interoperability

Management

Knowledge

«file»
sources.owl

«file»
knowledge
actors.owl

«file»
standards.owl

«file»
acquisition.owl

Fig. 7. Part of the implementation model.

3.5 The Test Workflow.

The test workflow allows to verify that the ontology
correctly implements its specification. To this end, a
number of test cases are developed. A test case is a
set of test inputs, execution conditions and expected
results for a certain objective, both to verify
compliance with a specific requirement and to
exercise a particular (knowledge) path through a use

4 http://www.w3.org/TR/owl-features

case. In table 2 a test case from the Interop project is
reported.
In this workflow the modellers assess the compliance
of the produced ontology artifact with respect to the
user needs captured during requirements. As UPON
is a use-case driven process, a test failure means that
no use case stresses the required knowledge path (if
any) that can satisfy the test. In this case, some
requirements integration has to be performed during
subsequent iterations.

Table 2 A test case for the Interop project.

Input: Who acquires knowledge?
Expected
Result:

The knowledge engineer alone
and through the domain expert.

Conditions: The domain expert knows the
required domain.

4. EVALUATION

In this section we provide a two-fold evaluation of
the proposed approach. First, we provide a
comparative evaluation with respect to the
methodologies introduced in section 2. Second, we
briefly describe our experience in using the process
in the context of the Interop Project on
interoperability and in building an ontology of e-
business for the Athena Integrated Project .
In order to evaluate a number of different ontology
building processes, Fernández and Gómez-Pérez
(2002) present a framework based on the comparison
with respect to the IEEE 1074-1995 standard for
developing software life cycle processes. Here we
integrate UPON into the evaluation framework in
order to assess it with respect to the other proposals.
The IEEE standard, applied to ontologies,
distinguishes three kinds of processes: project
management processes, concerning the creation of a
project management framework for the entire
ontology life cycle; ontology development-oriented
processes; integral processes, required to complete
ontology project activities (documentation,
evaluation, knowledge acquisition, etc.).
UPON provides full support to the ontology
development process, but also to the production of
documentation (intrinsic to the nature of the process),
evaluation (through use-case testing), and knowledge
acquisition.
Because of its nature, UPON does not deal with
project management processes and pre/post
development activities, while this is a major benefit
of the On-To-Knowledge approach (sketched in
section 2). On the other side, the adoption of UPON
does not require any learning curve for enterprise
modellers using UML and the Unified Process,
because it is an adaptation of the UP to ontology
building. This is an advantage also over the adoption
of METHONTOLOGY, that roughly covers the same
development processes as UPON. Furthermore, an
extension of the UP, the Enterprise Unified Process
(Nalbone et al., 2004), is being developed with the
aim of taking into account project management and

all the other pre/post development activities, but this
is out of the scope of the paper.
Another big advantage of UPON over the other
methodologies is that diagrammation, documentation
and versioning can be performed with the aid of a
variety of tools specialized for the UP, like Rational
Rose, Microsoft Visio, Together ControlCenter, etc.
The methodology is being applied in the context of
the Interop European Project to the construction of
an ontology of interoperability, aiming at sharing a
view of interoperability concepts, integrating the
competences from the different areas of Enterprise
Modelling, Ontology and Platform & Architectures,
and supporting the tasks of manual and automatic
classification and retrieval of documents and
databases.
UPON is also being applied in the context of the
Athena Project for building an ontology of e-
procurement, concerning all the processes and the
interactions between a buyer and a supplier (e.g.,
exchange of business documents like an invoice or a
purchase order). The goal of the ontology is to
provide a better understanding of the domain of
interest and be a support for semantic interoperability
between two legacy systems. We envisage three
basic uses for it: search and retrieval, reconciliation
of exchanged data and processes between business
partners.
Although the work is ongoing, a number of clues hint
at the success of a methodology based on a well
established process coming from the object-oriented
software engineering community. The modellers
know thoroughly UML diagrammation, the Unified
Process and the related productivity tools. Indeed,
their familiarity with the process has made it easier
to understand and follow UPON during the whole
ontology building process.

5. CONCLUSIONS AND FUTURE WORK

In this paper we presented UPON, an ontology
building methodology that is based on the Unified
Process. The guidelines for building an ontology
differ from those suggested for developing a
software system, but we showed that the same
diagrammatic forms can be productively used for
each phase of the lifecycle of both software systems
and ontologies.
The strength of the approach lies in the UP being a
highly customizable framework. It can indeed be
tailored to fit a number of variables: the ontology
size, the domain of interest, the complexity of the
ontology being built, the experience and skill of the
project organization and its people. Furthermore, the
modellers can decide to adapt the scheme presented
here for one of the methodologies derived from the
UP (like the Rational Unified Process).
In a future work, we would like to provide a more
detailed evaluation of the process with respect to the
other proposals as well as an analysis of how to adapt
cross-phase activities to the needs of ontology
building. In describing UPON, some aspects of the
UP, like interfaces, architectures, activity diagrams
etc., have been neglected for the sake of space.

ACKNOWLEDGEMENTS

This project is partially funded by the Interop NoE
and Athena IP, 6th European Union FP. Special
thanks go to Prof. Paolo Bottoni for his stimulating
comments on this work.

REFERENCES

T. Berners-Lee, J. Hendler, O. Lassila (2001). The

Semantic Web. Scientific American, May 2001.
O. Corcho, M. Fernández, A. Gómez-Pérez (2003).

Methodologies, tools and languages for building
ontologies. Where is the meeting point? Data &
Knowledge Engineering, 46, pp. 41-64.

C. Fellbaum, Ed. (1998). WordNet: an Electronic
Lexical Database, MIT Press.

M. Fernández, A. Gómez-Pérez, N. Juristo. (1997)
METHONTOLOGY: From Ontological Art
towards Ontological Engineering. Symposium on
Ontological Engineering of AAAI. Stanford,
California.

M. Fernández, and A. Gómez-Pérez (2002).
Overview and Analysis of Methodologies for
Building Ontologies. The Knowledge
Engineering Review, 17(2).

T. R. Gruber (1993). A Translation Approach to
Portable Ontology Specification. Knowledge
Acquisition 5, pp. 199-220.

M. Gruninger, and M. S. Fox (1995). Methodology
for the Design and Evaluation of Ontologies,
Proc. of Workshop on Basic Ontological Issues
in Knowledge Sharing, Montreal, Canada.

N. Guarino, M. Carrara, P. Giaretta (1994).
Formalizing Ontological Commitments. In
Proceedings of AAAI 94, volume 1, pp. 560-567.

G. Guizzardi, H. Herre, G. Wagner (2002). Towards
Ontological Foundations for UML Conceptual
Models. 1st International Conference on
Ontologies, Databases and Application of
Semantics, Irvine, California, USA.

I. Jacobson, G. Booch, and J. Rumbaugh (1999). The
Unified Software Development Process. Addison
Wesley, USA.

M. Missikoff, and F. Taglino (2002). Business and
Enterprise Management with SymOntoX. 1st
Int’l Semantic Web Conference, Sardinia, Italy.

R. Navigli, and P. Velardi (2004). Learning Domain
Ontologies from Document Warehouses and
Dedicated Websites, Computational Linguistics
30(2), MIT Press, April.

J. Nalbone, M. Vizdos, M. Ambler (2004). Adopting
the Enterprise Unified Process. White paper,
Ronin International Inc.

OntoWeb Deliverable 1.4: A Survey on
Methodologies for Developing, Maintaining,
Evaluating and Reengineering Ontologies
(2002). http://ontoweb.aifb.uni-karlsruhe.de/
About/Deliverables/D1.4-v1.0.pdf

Y. Sure, S. Staab, R. Studer (2004). On-To-
Knowledge Methodology (OTKM). Handbook
on Ontologies, Springer, pp. 117-132.

M. Ushold, and M. Gruninger (1996). Ontologies:
Principles, Methods and Applications.
Knowledge Engineering Review, 11(2).

