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Abstract: An adaptive gain, smooth sliding observer-controller is developed to
control n -degree of freedom rigid robotic manipulators with uncertain parameters.
Furthermore, an on-line closed loop identification scheme, for time-varying
parameters is proposed in order to obtain useful information despite loads, external
disturbances and faults detection. In order to reduce the chattering, a smooth
switching function (parameterised tangent hyperbolic function) is used instead of
pure relay one, in the observer and the controller. The gains of the switching
functions are adaptively updated, depending on the estimation and tracking errors,
respectively. Using adaptive gains, the transient and tracking responses are
improved. Simulation results with a two degree of freedom (DOF) robot manipulator

are presented to show the interest of the approach. Copyright © 2005 IFAC
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1. INTRODUCTION

State and parameter uncertainties in rigid robotic
manipulators models, considered as MIMO non-
linear systems, as well as external disturbances lead
to some problems in parameter identification and
state estimation. All that necessitates to design the
controller and/or the observer such that the closed
loop robustness is achieved, i.e., stability with small
tracking and estimation errors. It is well known that
robustness to model parameter uncertainties and
external disturbances can be achieved with a sliding-
mode controller. Indeed, maintaining the system on a
sliding surface weakens the effect of the uncertainties
in the closed loop performances and quickly leads to
an equilibrium point. In Filipescu et al. (2003), an
adaptive variable structure control with an ad hoc
switching function (parameterized tangent hyperbolic
denoted £ -tanh) with adaptive modifications of its
magnitude (denoted as A -modification) is used,
instead of a pure relay one with constant gain. In this
paper, also, the parameterized tangent hyperbolic
function is used as a switching function in order to
alleviate or/and eliminate chattering. Decreasing the
k parameter in the switching function makes the gain
around zero smaller and the unmodelled dynamics do
have weak influence in high frequency. The input

output delay due to the control input computation and
the finite rate of switching can lead to chattering.
Using the A -modification in the k -tanh switching
function gain, smoothes the response and increases
the robustness to structural uncertainties. The
adaptive gain is time depending and the norm of the
corresponding sliding surface is an input. Based on a
time-varying parameters identification technique,
presented in Xu and Hashimoto (1993), Xu and
Hashimoto (1996) and Xu, Pan and Lee (2003), the
scheme is extended by introducing the observer,
smooth switching function and the adaptive gain. It is
then applied to a general robotic manipulator model.
The physical robot may have gears and clutches
inside the joint, and the torque supplied by the DC
motor is transmitted to move the link. For this reason,
a general robot manipulator model is considered. A
sliding-mode observer-controller based on Sanchis
and Nijmeijer (1998) is proposed. Extensions of
sliding-mode control to MIMO non-linear uncertain
systems have been made in Khalil (1996) and Utkin
(1992). Several applications of the variable structure
control to robot manipulators point out the robustness
w.r.t. uncertainties and external disturbances of the
closed loop (Slotine & Sastry, 1983; Canudas de Wit
& Slotine, 1991). With the k& -tanh switching function
and the A-modification in the observer-controller



gains, the closed loop behaves like an approximate
sliding mode, in the neighbourhood of the
corresponding sliding surface.

The main contributions of this paper are as follows:
the adaptive smooth sliding observer-controller, the
updating law of the variable structure gains, and
finally, the identification of the time-varying
parameters and external disturbances.

2. ADAPTIVE GAIN SMOOTH SLIDING
OBSERVER

A very general robot manipulator model can be
expressed as a square non-linear MIMO model

).(1 =X72, X1 € 9?",
%5 = h(xp.p) " [f(x1.x2,p) + g(x1. X2, )u] M

y=x1, peR”®, x,eR" ueR"

where x; is the only vector available for
measurement, u and y are control input and measured

output, respectively. The state space dimension is
T T _g2n .
2nand x=|x; X, | €R™ 1is the state vector.

The wunknown time-varying parameter vector

P eR™ is supposed to be bounded. The function

matrices f, g and h may be partially unknown, with
some parameter uncertainties. If one assumes the
partial knowledge of the model parameters, state
estimates, time-varying parameters and disturbances,

one can deﬁnef:f(xl,fcz,f)), ézg(xlafiz,f’) and

h= h(xl, 15) as the estimates of the functions f, g and
h. Moreover, if the matrices g(xl , X Z,p) and
g(xl,fiz,ﬁ) are nonsingular for all x,X,p,p, then

the system may be feedback linearizable. Consider
the observer sliding surface S, =%x;—x; =0,, the

observer can be written as:

x; = -T(%) =% )+, (t) tanh(koS, )+ % ,
Xy =T (%) - X))+ ©,(t)tanh(k,S, ) @)

+h(x;,p) [f(xb %5,D)+8(x;. X2, pu(x), X, p)]

=diagly;; v, T2 =diaglyo; 72 ]
with v; >0,i=12 and j=Ln. k, >0 is a design
parameter. ® = diag[@n ---Gln]and
0, = diag[e 7109 ] are time-varying gains defined
by (A -modification is included):

|

where I';

0,(t)= —7~1®1(t)—91diagh§11 _X11|""7A(1n —X1n

(3)
@2(t):—K2®2(t)—p2diagﬂf(“ _X11|"'|§(1n —X1n|],
4)
where &, =diag[hy; Ay, |, Ay =diag[hog Aoy |,
p; =diaglpy; pin]. pa =diag[pa; -pas], with

Mi»> M2isP1is P2 i =1,-+-,n positive constants.

Remark 1: The dynamics (3) and (4) of the switching
force the matrices ®;and ®, to the negative values.

They are almost zero when the observer is in the
sliding surface neighbourhood. In order to satisfy the

attractiveness condition S;S,; <0, i=1,...,n, the
gain  ®; must be chosen such that
—Oh |X21 ) x2i(t],i=1,...,n,Vte[0 00)

By an appropriate choice of the matrices A; and pq,

the above condition at # =0 remains satisfied for any
t>0.

If the active torque delivered by the joint DC-motor
is considered as the control input, the model of the
n -DOF robotic manipulator is

H(q, m, )q + C(q, q

T
where q:[ql qn]
positions, H(q,mp)eR™" is the positive definite

m )e K™ ig the Coriolis and

m, Ji+Fg+Gla.m, )=u+d (5)

is the vector of link

inertia matrix, C(q,q,
centripetal force matrix, F e R™" is a positive semi-
definite diagonal matrix with the viscous friction

coefficients, ueR" is the vector of driving torques.
Define the unknown time-varying parameter vector

T
t)= [mp (t), dT(t)] eR"™ , where my(t) is the
payload and d(t) is an additive input disturbance. Let
T : T
q=X :[Xll Xln] > q=X3 :[X21 in]

be the angular positions and velocity vectors,
respectively. The measurements only concern the link

positions y=x;. The robot state space
representation can be written as
Xl =X

C(Xlaxzamp)xz (6)

<, =—Hlx;,m, | :
2 (XI mp) +G(X1,mp)+FX2 —u-—d

Taking into account the uncertainties, one can define:

(cy. g )= Fiy () )+ F (x )i )
é("l»Xz’ ) Ci(x1,%2)+Co(xp, %, )mp . (8)
(x1, 10, )= G (x1)+ G (x )i 9

as the estimates of the function matrices:
H(xl,mp),C(xl,xz,mp),G(xl,mp). Without loss

of the generality, the friction is considered as an

>

C))

uncertain positive constant diagonal matrix F.

The following assumptions have to be done:

Al: The reference signals y,(t) i=1,---,n are C"
functions;

A2: ﬁ(xl,rhp) and H(xl,mp) are non-singular
matrices for all x;,m,, rhp;

A3: The time-varying vector p(t) is bounded for all t.



With the previous notations, the model (6) can be
rewritten as:

In 0 7.(1 _ O In Xl
0 H|x,| |0 C|x,
0 0] x; 0 N 0

0 Fj|x, G| |u+d]|
The smooth sliding observer with switching function

k -tanh and adaptively updated gains (including A -
modification as in (3)-(4)), is given by the equations:

(10)

)21 :—1—‘1()21 —x1)+®1(t)tanh(koso)+§(2

Xy =T (%) —x1)+0; (t)tanh(k,S, ) (11)

~A7eR, + PR, + G-

The estimate error equation can be written as

).(2 =—®2®f1§2 —ﬁ_l [é;(z +ﬁ)22 +G—ﬁ]
H'Cx, +Fx, +G—u—d]

Above equation assures the stability of the observer

and exponential convergence rate The smooth
switching  function allows considering that

S, =0, S,~0 are
satisfied during sliding.

approximate  conditions

3. ADAPTIVE GAIN SMOOTH SLIDING
CONTROLLER

The controller is developed, assuming that Xx;is

known and x, is given by the observer.

Corresponding to the n-dimensional control input,
the controller sliding surface is defined as:

Selx1.%2) =%, (-3, (+wlxi ()-y,(t). (12

where yr(t) represents the trajectory to be tracked.
The matrix = diag[\yl wn], with constants
v, ~0,i=1,---,

sliding. The sliding surface is attractive if the
following condition holds:

n, determines the dynamics during

8,84 <0, i=1,...,n. (13)

The time derivative of the sliding surface can be
written as:

éc = ;iz Yir +W(X2 Y1r (Xpm T

[f(xla R0, P)+ 8(x1, 2, PJ(x), R, P)]— ¥+ wRy - ;)

(14)
If k -tanh is used as the switching function and if the
matrix n= diag[m ~--nn] is time-varying (including
the A -modification), with

S

f](t):_kcn(t)_pcdiaguécl J’ (15)

then the controller fulfilling the sliding condition

cn

éc =0 can be expressed as:

A

a=—f(x,%,,p)+& " (x1, %5, p)h(x, )

[ yS, +n(t tanh( CSC)+yr wx, -y, 1o

"xcn]’ Pc :diag[pcl "'pcn]

are positive definite matrices. The term —\ygc is

where A, = diag[kcl

introduced to reduce the controller to a classical
feedback linearization one (Marino and Tomei 1995)
if the switching term is set to zero.

To fulfil the attractiveness condition (13), it is
necessary to express the derivative of the sliding
surface (12):

éc :;(2 —-Vr +\V(§(2 _Yr):_ﬁ(xlvﬁlp)_l
[é(xl,f(z,ﬁlp)ﬁz+F§2+G(x1,ﬁlp)—ﬁ]. (17)
_.}.’r""V(;‘Z_}"r)

Similarly as for the observer, using the switching
function £ -tanh and the A -modification in the gain,
the sliding condition is fulfilled if the control input is
chosen as:

u:C(xl,xz,mp)xz +Fx, +G(x1,mp)

. —yS S : (18)

N H(x1 ’ rhp { \.|.JSC + T]A(t)taljlh(kc c )
+9: —vl&s -¥,)

The controller switching gain n(t) is adaptively

updated as in (15).

Remark 1. The observation error is nonzero if a k -
tanh function is used as a switching function in the

observer equations. The controller sliding surface Sc

can still be attractive by choosing sufficiently large
initial values for the switching gains ®; and ©,.
Moreover, the tracking error does not go to zero on
the controller sliding surface because the smooth
controller is used ( k -tanh switching function).

Remark 2. In order to reduce the influence of the
velocity estimation error in the control input, the
relative weight of the states X 5 in the definition of the

sliding surface should be decreased. This explains the

introduction of the supplementary term — \yéc in the

control input. The increase of the parameter vy is

limited by the switching frequency and possible
measurement noise.

Remark 3. The initial value of the switching
controller gain must be defined to guarantee the
sliding condition after convergence of the observer,
when the error in state estimates is bounded.

Remark 4. The observer and the controller, both in a
smoothed form, can achieve high performance. By
choosing the value of the constant k,>k., the

smooth switching function of the observer is closer to
a pure relay than the smooth switching function of
the controller. Therefore, the observer converges
faster than the controller with a small estimate error.
The state estimates could be chattering-free,
independently of the values of the gains ®; and ©,.



Furthermore, by choosing the matrices ®; and ©®,

adaptively updated as in (3) - (4), the magnitudes of
the switching function go to small values while the
link position errors go to small values.

4. PARAMETER IDENTIFICATION BASED ON
SMOOTH SLIDING OBSERVER-CONTROLLER

The way followed for the time-varying parameter
identification is quite different from that proposed by
Xu, Pan and Lee (2003). Firstly, it is based on the
state estimates and on the faster convergence of the
observer than the controller. Secondly, it is based on
a smooth sliding observer-controller (both of them
having adaptive switching gain). A zero or small state
estimate error leads to zero or small tracking error
and small gains of the corresponding switching
function. Then during sliding, the weight of the
switching term is negligible w.r.t. the compensation
part. Define the parameter vector estimate as p. If
the functions f, g and h are linear in time-varying
parameters, each term of the system (1) can be
expressed as follows:

On Onx(np—l) R ’ (19)
" 1Alz(Xl)Xz w;x(np_l) p(t)
X2 X2
|:?(Xla Xz,P)} ) {Al(xls Xz)}
0 (20)

In an n
|:Onxn g(x1. %, P}{ } L%l (x1.%5,u )} (21)

+®3(xp, %5, 0)p(t)

Define the followings matrices and vectors:

R 1 0
i B)=| ™ RN 2
ﬁO(Xla)éZ:Xl:)’\(z):|:ﬁ1(:11)§2:|’ (23)

‘1)1(541,;42#1,5(2): i , (24

folxp,%0.D) { % J, AOI(XI,QZ):{A (fi{ I (25)

X15X29 f1X1,X2
n On Onx(np—l)
D, (x1,%,)=] 2 , 26
2(x1.%5) £y (x1,%5) (Przlx(np_l) (26)
A 5 A\ In 0nxn
GO(XI’Xzﬁp)_|:0nxn g(xlaﬁbf’)}’ @7

In the relationships (22) - (28), ICIO , GO are 2nx2n

matrices, ®;, ®,, ®; are 2nxnp matrices and

f 0> %01» 20, ﬁo are 2n vectors. With the previous
notations the robot model can be expressed as:

Ho(xp.p)k = fo(x1.%2)+Go(x 1, %2.P)ip,  (29)
ﬁTr.

Assumption 4: For each element p;(t),i= l..n, of

where () = [OE

the unknown parameter vector p(t), there exist a

priori known values p; ,p; , such that
p mm <pl <p1max

Define the matrix

(AD()'(I,)Ez,Xl,)zz,u):—(i)l-i-(i)z +(i)3 (30
and the vector

&(Xlsﬁzsxbﬁzau):ﬁo—%o—éo €1y
of 2nxn,, and 2n-dimensions respectively. Suppose
that ®Td is a nonsingular matrix, then the

parameter estimate p can be computed as the
minimum residuum solution of the system (i)f) =0.
In order ensure the boundedness of p, the following
algorithm is used to compute the parameter estimate:

. LI A
Pi . if |:((I) (I)) () } <Pi, >

0 [(&)Té)‘la)%l if [(@T@l)‘lé%}

P, |

min

i (32)
€ |Pi

A A
if [(@ch) (IDT&} >p;
i
With the observer (2) and the control law (18), (with
smooth switching term and gains adaptively

updated), the neighborhood of the controller sliding
surface (30) can be reached in finite time. Choosing

the Lyapunov function V = éZé c / 2 and defining the

set{ S,

some 7 20 such that Vie [O T )

p i max max

1 . .
£k—}, it can be proven that there exists
C

(X‘>kL and

C

éc (tﬂ is strictly decreasing until it reaches the set in

finite time and remains inside thereafter (for t > T)).

Particularizing the previous relationships for an n-
degree of freedom robot manipulator, considering the
estimates of the velocities and the uncertainties in the
parameters, the robot model (10) becomes:

Xl On A )22
Ao +| A m,y=—| ~ . AN A
H1X2 H2 P C1X2 +FX2 +G1
0 . 0 0
o PSRN 1 P el B
C2X2 +G2 u d
Define the 2nx2n matrices and 2n vectors:

I:I()=|: In Onxn:| }"1 |: X1 j| (34)
Onxn H HIXZ ,

(33)



~ 0n Onx(npfl)

Oy =]~ , (35)
H2X2 Onx(np—l)

o X p X)

fo = < ~ |, fy1= . A ~ 1, (36

0 |:—CX2 —F)’iz —Gi| fOl |:—CIX2—F§(2—G1:| ( )

. 0 Onx(n, -1

@2 _ X An i nx(np ) ’ 37)
| ~C2X2=Ga lix(n 1)

~ 1, o

Go=| " nxn}»éo(xlafizau)—{ } (38)
_Onxn In

2 _Onxn Onx(n —1)

05 = P 39

3 L On Onx(np—l) ( )

This allows writing

~ X s A A

HO R = fO +G0u (40)

X2
with equivalent form
hy +®@p =1y + Dyp+go+D3p. (41)

Remark 5: The smooth sliding controller allows the
using of the compensation part as equivalent control
input signal during sliding. The adaptive gain of the
controller switching term goes to zero or becomes
very small, depending on the error in the state
estimate.

4. CLOSED LOOP SIMULATION

A 2-degree of freedom vertical robot with 2 rigid
revolute joints, 2 rigid links, a time varying payload
m,(t) and an additive disturbance d(t) on the control
input has been considered to test the smooth variable
structure observer-controller with the time-varying
parameter identification scheme developed in this

paper. The position and velocities vectors are:
T T

xp =[xy xpp] and x5 =[xy x5 ]

The trajectory to be tracked is defined as

0.7sin(2t+0.3)]"

—1+0.7sin(3t)]T is the parameter
—-0.5t

v, =[-0.5+0.3sin(t-0.3)
p(t)= [3 +e
vector to be identified, m, (t)=3+e

and d(t)=-1+0.7sin(3t) the additive disturbance.

The corresponding robot model matrices and vectors
are

the payload

Xlo )

[9.77+2.02c0s(x1,) 1.26+1.01cos(x), ) @)
| 1.26+1.01cos(x1,) 1.12 ’
2+2cosx12 1+cos(x12)

m
1+cos(x;,) 1 P
C X1,Xp,m p)
—X22 —le—xzz}wl

:sln(x12

—X22 TX217X22
+ mP
X21 O

1.13sin(x11 +X12)

+g|:Sll’1(X11)+ Sll’l(Xll +X12 ):|mp

Sin(x“ +X12)

8.1sin(x 7 )+1.13sin(x; +x
G(xl, p):g[ (x11) (x11 12)}
(44)

F = diag[10 10], (45)

_ ‘o _
X12

[9.77 +2.02 cos(x 5 )|k 5

46
+[1.26+1.01cos(xpp fkoy |7 (40

_[126+ 1.01008(){12 )]).(21 +1.12X22 ]

- 47
[2+2COS(X12)]).(2] +[1+COS(X]2)]).(22 ( )

[1+cos(x 3 )]k o1 +%2)

[=EN el o=

X21
X22

1.015in(x12 )x22x21

+(X21 +X22 )l.OlSin(Xlz )X22

for = —8.1gsin(x;;)—1.13gsin(x 5, +x5) (48)

—1OX21

—l.Olsin(x12 )x%l

—1.13gSi1’1(X21 +X22)—10X22

sin(x15 )X 22X 2
+(x 21 +x9 )sin(x15 )x 2

—gsin(x;;)-gsin(x5; +x,)
| —sin(x 1, —gsin(xy; +x9p) 1]

. (49

(=

go=[0 0 u; uy]", d3=[04] (50)

The initial conditions are chosen as:
x1(0)=x,(0)=%,(0)=[0 0]"; %,(0)=[-1 2],

GI(O){_(I)O —(1)0} ®2(0):[_1000 —300}
n(o){_os —?o}

The following constant design values are chosen:
M =Ly =h, =diag[l 1], = diag[10 10],
I, =diag[5000 5000], p;=p, =p, =diag[l 1]
v =diag[20 20].



Fig.1. Closed loop robot response, smooth sliding
observer and controller, parameterized tangent
hyperbolic switching function k, =10, k, =1.

Fig. 1 shows the closed loop simulated manipulator
response. Adaptive gains, smooth sliding observer-
controller and time varying parameter have been
introduced into the loop. Small parameter
uncertainties (10%) have been considered. Choosing
k, > k., a faster sliding observer convergence than

that of the sliding controller is obtained. The response
is chattering-free, despite the limitations introduced

into the control input (|u1| <150; u2| <75). Even fif,

during sliding, the system evolves in a neighborhood
of the corresponding sliding surface, the output
tracking is achieved. In Fig. 2, the identification of
the time-varying parameters my(t) and the disturbance
d(t) is shown. The reference signal is chosen to avoid

the singularity of the matrix ®Td. In order to
compute the derivatives of the state estimate, the first
order numerical difference is used. The phase lag
does lead neither to instability and nor to fluctuation
in the parameter estimates.

5. CONCLUSIONS

A robotic manipulator closed loop control with
adaptive gains, smooth variable structure observer-
controller and time varying parameter identification
has been designed and tested by simulation. The
output tracking and the robustness w.r.t. uncertainties
and external disturbances are improved by the use of
parameterised switching functions with gains
adaptively updating. The parameterised £k -tanh
switching function assures an improvement or a
complete elimination of chattering. An appropriate
choice of the parameters in the observer and
controller switching functions allows a faster
convergence rate of the observer than that of the
controller. The adaptively updated gains lead the
system to output tracking with smooth transient
response. With some conditions on the robot model,

Fig.2. Closed loop, smooth sliding observer-
controller, on-line time varying parameters and
payload identification.

reference input and a priori information, the identifier
of time-varying parameters converges. The error in
the parameter estimates depends on the estimated
state error and on the tracking error.
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