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Abstract: This paper introduces the session describing the state-of-the-art in the applica-
tion of evolutionary computation in control system engineering. Evolutionary methods 
such as genetic algorithms (GAs) and genetic programming (GP) are particularly suitable 
in problems for which conventional optimizers are inefficient or inappropriate, rather than 
simply as an alternative to conventional optimization. This session will be of interest to 
the control engineering community as a whole, and will provide an educational back-
ground to those not familiar with these methods as well as presenting new results and 
applications. Copyright © 2005 IFAC 
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1.  INTRODUCTION 
 
Completeness and harmony in nature are largely the 
result of evolutionary forces that have adapted spe-
cies to their surroundings and to each other. Exam-
ining natural phenomena, one can appreciate the 
potential of nature’s ready-made solutions, which are 
often more efficient than man-made ones. For exam-
ple, consider spider silk, which is more elastic than 
nylon and stronger than steel, and witness the abili-
ties of the spider, essentially blind with a limited 
nervous system, to use six variants of silk to build a 
robust, complex structure in an unpredictable envi-
ronment (Conniff, 2001).  
 
With nature as a motivator, recent decades have seen 
increasing attempts to mimic natural evolution using 
computers (Fogel et al., 1965; Holland, 1975; Koza, 
1992). These efforts are stimulated by Darwin’s 
notion of “the survival of the fittest,” are generally 
referred to as evolutionary computation, and have 
been applied successfully to solve particularly com-
plex problems. In evolution, the problem each spe-
cies faces is one of searching for beneficial adapta-
tions to a changing environment, with the “lessons” 
learned captured in the chromosomes of its popula-
tion. Furthermore, evolutionary methods keep track 
of populations of potential solutions, and are thus 
less sensitive to arbitrary initial guesses of the solu-

tion than classical optimization methods, which often 
rely on local gradient search.  
 
This paper presents a review of the state-of-the-art in 
the two most prevalent evolutionary computation 
methods that are applied to control systems engi-
neering: genetic algorithms and genetic program-
ming.  

 
 

2.  GENETIC ALGORITHMS 
 
The most commonly-used evolutionary computation 
algorithm is the genetic algorithm (GA). In most 
implementations, these algorithms manipulate binary 
encodings of the decision variables to be optimized, 
which are concatenated into so-called chromosomes. 
Mimicking nature, the algorithm starts its search 
from an initial population of solutions, usually gen-
erated randomly, or occasionally, based on problem-
specific knowledge. The performance of each 
individual is evaluated using a fitness function that 
gauges its performance, with the most successful 
(efficient) chromosomes having a higher probability 
to reproduce. In synthetic evolution, reproduction is 
similar to that in biological reproduction, which by 
mimicking natural operators like crossover and muta-
tion creates a generation of offspring solutions. 
Crossover generates new features in the solution 



     

space by combining genetic information, while 
mutation does this by adding random perturbations. 
The subsequent generations are subjected to these 
evolutionary operators, thus producing generation 
after generation of offspring solutions. Since the 
more appropriate solutions are given higher prob-
abilities to reproduce, one would expect a growing 
improvement of the solutions over generations. 
  
It has been shown that genetic algorithms are effi-
cient and appropriate optimization methods for con-
trol system design (see the excellent survey by 
Fleming and Purshouse, 2002), for both feedback 
controllers (e.g. Fonseca and Fleming, 1993; Lewin, 
1994; Tang et al, 1996; Fonseca and Fleming, 1998; 
Lewin and Parag, 2003) and feedforward controllers 
(Lewin, 1996). All these studies have involved the 
optimization of the parameters of a control system of 
fixed structure in order to achieve robust stability 
and specified performance. The multi-objective 
approach (MOGA), first suggested by Fonseca and 
Fleming (1993), permits the modification of the 
objective as performance is gauged in the course of 
optimization. This methodology allows multiple, 
often non-commensurate, performance objectives to 
be handled separately, and allows goals and priori-
ties for these to be updated by the decision-maker 
during the course of the optimisation as the effect of 
trade-offs between them are discovered. MOGAs 
have been successfully applied in the design of sev-
eral complex control problems, such as a gas turbine 
aero-engine, relying on a classical control frame-
work (Chipperfield and Fleming, 1996), as well as in 
several contributions in this session (Ferreira et al. 
(2005); Molina-Cristόbal et al, 2005; Stirrup and 
Chipperfield, 2005). It is noted that the MOGA 
approach is a generalization of the trade-off line 
approach advocated by Lewin (1994), in the auto-
mated design of MIMO systems. Exploiting the 
population-based nature of GAs, Lewin (1996) has 
shown that statistical hypothesis testing can be 
applied to a population of successful solutions in 
order to eliminate controller parameters, which have 
little impact on the optimal solution. Lewin and 
Parag (2003) presented a constrained genetic algo-
rithm (CGA), in which the desired trade-off between 
robustness and performance is incorporated into the 
control design procedure for uncertain processes. 
The following section provides a demonstration of 
the capabilities of a GA to solve a nonlinear control 
problem, featuring a discontinuous search space.  
 
 

3.  AN EXAMPLE GA APPLICATION 
 
3.1 Problem definition. 

Consider the neutralization process in Figure 1, in 
which an acidic waste stream of HCl, F1, is to be 
neutralized using a controlled stream of NaOH, F2. 
The control objectives are to maintain the effluent 
stream, F, at a pH of 7, despite possible upsets in the 
flowrate and HCl concentration in F1. This is a diffi-
cult control design problem because the 
neutralization curve is highly nonlinear, meaning that 

the effective gain of the process, the local gradient of 
the curve in Figure 2, rises by several orders of 
magnitude as the setpoint is approached.  
 
Following Shinskey (1979), a PI controller with reset 
time τI, and with a three-piece nonlinear gain, Kc, is 
adopted to overcome this difficulty, with a low gain 
used when the setpoint tracking error is inside a pre-
specified range, and a high gain value used when 
outside the range: 
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Fig. 1. Flowsheet of the neutralization process. 
 

Fig. 2. Neutralization curve. 
 
3.2 Solution using GA. 

The proposed control system, using the model of 
Kulkarni et al (1991) and simulated in SIMULINK®, 
is shown in Figure 3, noting that the disturbance to be 
suppressed is a step change in the flow rate of the 
acidic stream. To avoid ringing phenomena when 
switching from high to low gain values, a low-pass 
filter, with filter time constant τF, is inserted after the 
logic circuit that switches between the values. Thus, 
five parameters need to be optimized: Khigh, Klow, 
eband, τI, and τF. Considering the discontinuous nature 
of the control design, and the significant nonlineari-
ties in the system, this is a problem that merits an 
evolutionary approach.   
Figure 4 shows typical performance of the GA in the 
solution of this problem. The fitness function pre-
sented to the GA is the ITAE computed by simula-
tion using the five tunable parameters for which 
optimal values are sought. Typical computation time 
for a population of 30 solutions propagated over 30 
generations is about seven minutes on a 1.6 GHz 
Pentium 5 (faster times are possible  if  the  graphical  



     

 

 
Fig. 3. SIMULINK® model of the neutralization process, controlled by a three-piece nonlinear controller. 
 
 

Fig. 4. Performance of the GA: (a) Convergence 
properties showing evolution of best and 
median solution ITAE values; (b) Response of 
best GA-evolved solution (solid lines) com-
pared to linear PI (dotted lines). 

 
output of the MATLAB®-based code is suppressed). 
Figure 4(b) shows that the GA-tuned nonlinear con-
troller significantly outperforms a fixed-gain linear 
PI controller, whose gain needs to be set to be large 
enough to be able to reject the step disturbance. The 
relatively large gain required subsequently causes the 
oscillatory response in the vicinity of the setpoint, 
because of the exceedingly large process gain in the 
vicinity of the setpoint (pH = 7). 

 
 

4.  GENETIC PROGRAMMING 
 
While the efficiency of genetic algorithms in a num-
ber of fields has been demonstrated, they are unsuit-
able for generating empirical model structures, since 
they manipulate populations of solutions of fixed-
length chromosomes, while the optimal complexity 
of empirical models is unknown in advance. Because 
of this perceived need for more intelligent construc-
tion of empirical models, a more recent family of 
evolutionary computation methods has emerged, 
based on established GA ideas. These new algo-
rithms, referred to as genetic programming (GP), rely 
on tree-like building blocks and therefore support 
populations of model structures of varying length and 
complexity. Activity in Genetic Programming was 
introduced by Koza (1992), who demonstrated their 
applications in robotics, games, control, and 
symbolic regression.  

u1
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× 

+

×

c1  
Fig. 5. Tree structure for the model: (c1×u1 + u2)×u3. 

The multiplication functional is positioned at 
the root of the tree, and u3 and c1u1 + u2 are its 
branches. 

 
One of the important applications of genetic pro-
gramming is in generating input-output empirical 
models in systems engineering applications. The 
class of empirical models can be divided into two 
broad categories: (a) models with predefined struc-
ture (either linear or nonlinear), and whose parame-
ters are determined to maximize the capacity to pre-
dict process data; and (b) black-box models with 
undetermined structure. An example of the first 
category would be a linear model relating a depend-
ent variable, y, to a set of n independent variables, ui:  
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where the coefficients ai are determined to maximize 
the predictive power of the model. An example of a 
black-box model would be an artificial neural 
network (ANN), in which the number and identity of 
the relevant inputs and the number of layers are the 
only attributes of the structure that are determined by 
the user. The disadvantage of the first alternative is 
that the user must specify the structure of the model 
in advance, which is in general difficult to do. In 
contrast, the main disadvantage of the neural network 
approach is that no formal equation is obtained, and 
thus, the resulting model is difficult to analyze. 
Consequently, great care must be taken with the 
ANN approach to prevent over-fitting. Genetic 
programming, being an evolutionary method for 
automatically generating nonlinear input-output 
models, overcomes both of the disadvantages men-
tioned above, since structured models are obtained, 
whose complexity is optimized. 
 
When applying genetic programming to automati-
cally generate nonlinear MISO (multiple input, single 
output) models, the probability of a given model 
surviving into the next generation is proportional to 
how well it predicts the output data. Components of 
successful models are continuously recombined with 
those of others to form new models. The GP opti-
mizes the model structure, with a lower level nonlin-
ear least-squares algorithm harnessed to perform the 
associated parameter estimation. 
  
Several publications describe the usage of GP for 
nonlinear process modeling. South et al. (1996) 
introduce a Genetic Programming called GAFFER 
(Genetic algorithm for finding existing relationships), 
an algorithm that combines both logical and mathe-
matical operators. They demonstrate the use of the 
code to identify the parameters of a first order dis-
crete model, with a known structure – an application 
typical of what could easily be solved with a GA – 
and in finding the structure and parameters of a sim-
ple discrete model.  McKay et al. (1997) use a GP for 
inferential estimation in a vacuum distillation column 
and in reaction system modeling.  Willis el al. 
(1997), and Hinchliffe and Willis (2003) apply GP to 
both steady-state and dynamic process modeling, and 
demonstrate their algorithm on the steady state mod-
eling of a binary distillation column, and on discrete 
dynamic modeling of a twin screw cooking extruder.  
Gray et al. (1996) implement a GP for dynamic mod-
eling, in which a GP generates continuous discrete 
models, by combining MATLAB-SIMULINK blocks 
with sets of equations.  
 
Grosman and Lewin (2004) present an improved GP 
with the capacity to generate compact nonlinear 
models that accurately predict the input-output sys-
tem behaviour without requiring the user to specify 
the model complexity in advance; instead, the 
required model complexity is adapted to the degree 
required to appropriately model the data, eliminating 
the “bloat” phenomena indicated as one of the main 
disadvantages of the GP approach by Fleming and 

Purshouse (2002). Grosman and Lewin (2002) use 
their GP to automate the design of nonlinear MPC 
(NMPC). Lachman-Shalem et al (2002) demonstrate 
the exploitation of Grosman’s NMPC methodology 
for the control of a complete simulated photolitho-
graphy cluster, which has now been implemented on 
an industrial IC fabrication facility (Grosman et al, 
2005; Lewin et al, 2005). In this session, Grosman 
and Lewin (2005) present a method for automatically 
deriving Lyapunov functions for nonlinear systems 
stability analysis using the adaptive GP. A 
demonstration of the usage of the adaptive GP code 
(Grosman and Lewin, 2004) to provide a dynamic 
model for model predictive control follows next. 

 
 

5.  AN EXAMPLE GP APPLICATION 
 

5.1 Problem definition. 

Consider the relatively simple illustrative example 
involving a stirred tank fed by two streams a simu-
lated cylindrical mixing tank, consisting of two feed 
flows: one of fresh water and the other of saturated 
salt water. The objective is to ensure the fluid level in 
the tank and the effluent salt concentration are main-
tained at the desired set points. The total and salt 
mass balances are: 

0w s
dHA Q Q k H
dt

= + − ⋅  (3) 

( )
0w w s s

d C H
A Q C Q C k H C

dt
⋅

= ⋅ + ⋅ − ⋅  (4) 

In the above equations, H is the fluid level in the 
tank, C is the tank salt concentration, A is the cross-
sectional area of the tank (=1), Qw is the sweet water 
flow; Qs is the salt water flow, Cw is the sweet water 
salt concentration, (=0); Cs is the salt water concen-
tration (=1); k0 is the valve constant (=1). Since Qw 
and Qs are normalized to lie between zero and one, 
the normal operating ranges of the concentration and 
the height are also in this range. Thus, a level value 
in excess of unity implies overflow of the tank, and 
indicates catastrophic loss of control.  
 
5.2 Creation of state-space model using GP 

Discrete input-output models are generated to allow 
the prediction of level and concentration trajectories 
using the GP. Delayed outputs (k – 1, k – 2, k – 3) 
and inputs (k, k – 1, k – 2, k –3) are presented to the 
GP for predicting y(k). Pseudo-random sequences of 
steps in the two inputs are used to excite the process, 
with two sets generated – one for modeling and one 
for prediction. The sampling time is selected to be 
0.15 time units, to capture desired features of the 
process response. The use of trajectory matching for 
both modeling and prediction means that our 
approach is relatively insensitive to the sampling rate 
selected, which is one of its advantages. The models 
that score the highest are: 

( ) ( ) ( )
( )

0.818 1 0.134 1

          0.078 2 0.68
s

w

C k C k Q k

Q k

= ⋅ − + ⋅ −

− ⋅ − +
 (5) 
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           0.167 0.061
s

w

H k H k Q k

Q k

= ⋅ − + ⋅

+ ⋅ −
 (6) 

 
It is noted that both models are linear, which is not 
surprising, noting that the actual process is itself 
almost linear. This suggests that a linear MPC strat-
egy would be expected to do well on this process, 
which has been confirmed by simulation. 
 
5.3 Nonlinear MPC 

Model predictive control is a multivariable control 
strategy in which a process model is used to predict 
the effect of previous control actions and enable the 
optimization of future control moves, to ensure proc-
ess output variables are maintained on target. The 
nonlinear MPC controller presented by Grosman and 
Lewin (2002) is similar to that outlined by Henson 
(1998), with the main difference being the nonlinear 
GP model used to predict the future outputs, and con-
sists of several components: 
a. A MISO input-output model for each process 

output, created by the GP, which takes the general 
form: 

( ) ( ) ( )( )ˆ ˆ 1 | , 1 |y k f y k k u k k= − −  (7) 

where ( )ŷ k  is the predicted model output at 
instant k, ( )ˆ 1 |y k k−  is a vector of the previous P 
outputs, computed based on information available 
until instant k, and ( )kku |1−  is a vector of P 
inputs at instant k. The approach also handles 
nonlinear state-space models.  

b. Selected values for P, the prediction horizon, that 
controls the predictive range of the model, and M, 
the control horizon, that establishes the number of 
future moves to be optimized, noting that M ≤ P. 
In this application, these parameters are selected 
as P = 10 and M = 5. As in all MPC strategies, 
only the first of the computed controller moves is 
implemented at each sample interval. 

c. A matrix of historical data used by the model to 
predict the influence of previous outputs and 
inputs on the future outputs. The matrix has P 
rows and a number of columns equal to the total 
number of shifted inputs and outputs, and is 
refreshed every sample instant. 

d. A constrained quadratic objective function to be 
minimized, whose arguments are calculated on 
the basis of predicted values of outputs generated 
using the nonlinear GP models, resulting in a 
sequence of M optimal future inputs.  

 
5.4 Comparison of the GP-NMPC approach with PI 

Control 

A commonly used approach to multivariable control 
system implementation is decentralized PI control, 
often selected because it is easily implemented. Thus, 
the performance of the GP-NMPC approach is com-
pared here to that of a decentralized PI control sys-
tem, with pairings: H – QW, C – QS. Here, we report 

two representative tests that indicate the regulatory 
and servo performance of the controllers. 
 
Regulatory performance: A pulse of 40% in the 
influent salt-water flow is invoked, starting from the 
steady state [H(0), C(0)] = [0.5, 0.5]. The GP-NMPC 
is set up with a prediction horizon of 10 and a control 
horizon of 5, with all weights in the quadratic func-
tion set to unity, noting that inputs and outputs are 
scaled by definition. The response of the GP-NMPC 
and the PI control configurations are shown in Figure 
6. It is noted that GP-NMPC provides almost perfect 
disturbance rejection, whereas the response using the 
decentralized PI controller is oscillatory, indicative of 
the strong coupling in the system. Detuning the PI 
controllers reduces the intensity of the oscillations, 
but at the price of increased settling time. 
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Fig. 6. Regulatory performance of the NMPC and PI 
controllers: (a) GA-NMPC; (b) Decentralized PI 
Control. 
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Fig. 7. Servo performance of the NMPC and PI con-
trollers: (a) GA-NMPC; (b) Decentralized PI 
Control. 

 
Servo performance: A setpoint change in both out-
puts is commanded, from the steady state [H(0), 
C(0)] = [0.2, 0.2] to values at [0.9, 0.9], noting that 
these are close to the upper constraints of the process. 
The GP-NMPC is set up as in the regulatory test, 



     

with its response, together with that of the PI control 
configuration, shown in Figure 7. The GP-NMPC 
provides rapid acquisition of the targets, while satis-
fying the process hard constraints. In contrast, the 
decentralized PI controller, again strongly oscillatory, 
violates the upper level constraint, leading to over-
flow of the tank in the range 2 < t < 3 (in dimen-
sionless time units). 

 
 

6. CONCLUSIONS 
 

GAs and GPs mimic the natural evolutionary process 
through representation of engineering design 
parameters, in the case of GAs, and of model struc-
tures, in the case of GPs, as genes, and permitting 
them to evolve towards optimal solutions. Through 
the mechanisms of evolution and genetics, biological 
systems optimize and adapt their development. 
Adopting these same mechanisms, GAs and GPs 
exhibit great potential for the solution of complex 
control engineering design problems working within 
the constraints of their environment. Using these 
algorithms, a wider range of control systems design 
problems can be practically addressed. This paper, 
together with the other five contributions in the 
invited session Evolutionary Computation in Control 
Systems Engineering, provide an update on the state-
of-the-art in evolutionary computation as applied to 
control system design and optimization. 
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