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Abstract: The paper illustrates the design of a power system voltage control scheme
based on the model reference adaptive approach. Firstly, for an assigned operating
condition, a power system approximated linear model is build-up which represents
the system dynamics as seen from the busbar at which the controller is connected.
Then, by imposing a desired reference model, the controller parameters are
obtained by solving the model-following problem which ensures that the controlled
voltage tracks the voltage reference. In presence of unknown operating conditions
changes, the regulator parameters are varied according to an adjustment laws
designed on the basis of the gradient rule. The task of the adaptation mechanism is
to counteract the effects of such changes. Referring to a Static VAR System (SVS)
controllable compensator device the adopted model-reference adaptive control
scheme has been designed and its performance analyzed by accurate numerical
time simulation studies in the case of both unknown load variations and changes
in the power system structure, in particular line opening. Copyright c© 2005 IFAC
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1. INTRODUCTION

Secure and reliable operation of electric power
transmission and distribution systems is guar-
anteed by active power control and by volt-
age/reactive power control. In theory, voltage am-
plitude must be regulated at all nodes, but ap-
plying direct nodal voltage control at all system
busbars is impracticable and uneconomical. Then,
some devices, called compensators, are used to
support an adequate voltage profile in the whole
system by injecting reactive power at some key
nodes. The compensators are mainly synchronous
or static machines; they vary the reactive power
injection to regulate the voltage amplitude of the
busbar at which they are connected. The local
nodal voltage regulator follows a reference signal
which is determined by another centralized con-
trol system. However, the performance of the com-
pensator is strictly related to the power system
operating conditions and topology which change
unpredictably and unexpectedly due to various
factors, e.g. variations of the loads and of the
generation, forced outages of components, etc..

In these circumstances the compensator voltage
regulation may worsen its performance and, in
extreme cases, may become unstable. An effective
strategy to counteract these problems lead to the
adoption of adaptive control techniques. Closed-
loop adaptive control methods can be divided into
model reference adaptive systems and self-tuning
regulators. The former has lower computing com-
plexity of the adaptation algorithm and speed of
the adaptation process. It is especially important
for improving transient stability in presence of
fault, see for example (Gao et al., 1992; Wang
et al., 1994). In these cases, the whole power
system is assumed to be represented by a single
machine infinite bus model. In the case of volt-
age regulation, the self-tuning technique has been
adopted in papers (Chengxiong et al., 1990; Fusco
et al., 2001; Fusco and Russo, 2003) to design an
adaptive control scheme starting from a steady-
state power system model represented by the
Thevenin circuit (Kundur, 1994). Following the
adaptive approach, this paper presents a con-
trol scheme designed on the basis of the model
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Fig. 1. Model-reference adaptive scheme adopted
for voltage control.

reference adaptive control systems (Åström and
Wittenmark, 1989) to control the rms (root-mean-
square) busbar voltage v(t). According to such
technique, the regulator parameters are adjusted
without the help of any identification procedure.
The first step consists of building-up an approx-
imate dynamic linear model of the power system
as seen from the controlled busbar in a given
operating condition. Then a controller based on
the solution of the model-following problem is
designed to ensure that v(t) tracks vm(t) which
represents the desired output of a reference model.
In presence of power system operating conditions
variations, the regulator parameters are modified
according to an adaptation mechanism. The ad-
justment laws are designed on the basis of the
gradient approach. The proposed adaptive volt-
age regulation control scheme is then applied to
the case of a Static VAR System (Cigre, 1992)
connected to a High Voltage (HV) power system.
Accurate numerical-time simulations, both in the
case of load step variations and line opening, have
been run to evaluate the performance achievable
by the controller.

2. MODEL-REFERENCE ADAPTIVE
CONTROL DESIGN

The model-reference adaptive control scheme
adopted for nodal voltage control is represented
in Figure 1. Starting from a power system model,
see Subsection 2.1, the regulator parameters val-
ues are determined by resorting to the model-
following approach (Åström and Wittenmark,
1989) which ensures that the closed-loop trans-
fer function is close to the reference model, see
Subsection 2.2. In this way the output of the
power system model is close to the output of the
reference model and the error

e(t) = v(t)− vm(t) (1)

is small. The task of the adjustment mechanism is
to vary the controller parameters in order to make
the error small in presence of operating conditions
variations. The adjustment laws are described in
Subsection 2.3.

2.1 Plant model

A general plant is formed by controllable ac-
tuator devices and by the power system which
mainly includes transformers, transmission lines,

 

Fig. 2. Considered plant.

synchronous generators with their field excitation,
static and dynamic loads. It represents a nonlin-
ear system with variable operating conditions. In
literature various power system models have been
proposed according to the design problem. In the
voltage control problem, since the short-circuit
power of the regulation node is finite, the single
machine infinite bus model cannot be adopted. In
this context, power system steady-state frequency
models (Cigre, 1992; Kundur, 1994) are usually
used, such as the ones represented by a simple
short-circuit impedance or by the Thevenin equiv-
alent circuit referred to the regulation node. These
models account for the power system nonlinear-
ities but neglect its dynamics. Another power
system model is represented by the power-flow
balance equations (Kundur, 1994; Sauer and Pai,
1998) describing the system behavior in normal
steady state operating condition. However such
models were linearized around an assigned oper-
ating point to produce a linear dynamic model
for control design, see for example (Chaudhuri
et al., 2004). Concerning the adopted actuators,
approximated models are usually available. To
solve the model-following problem it is necessary
to build-up a plant linear model. For this aim let’s
consider the following model

M(z)
(
v(k)− v0(k)

)
= N(z) u(k − d) (2)

in which v0(k) is an unknown constant bias repre-
senting the no-load voltage (Kundur, 1994). The
goal consists in choosing the degrees nM and nN of
polynomials M(z) and N(z) as well as in identify-
ing their coefficients starting from data obtained
by field measurements or by accurate numerical
time simulations of the overall plant in an assigned
operating condition. In the case of this paper we
will refer to data output by simulations. The value
of the delay d is usually known since it depends
on the choice of the electronic device used as
actuator. In details, the considered power system
is shown in Figure 2 in which the electronic device
is represented by a SVS compensator, constituted
by a Fixed Capacitor-Thyristor Controlled Reac-
tor, see Figure 3, whose time delay is approxi-
matively equal to Td = 0.0034 s (IEEE Work-
ing Group, 1994). The three-phase 132 kV - 50
Hz power system is assumed to be balanced in
all its components. The transmission lines are
represented through the series of elementary cells,
each one representing the equivalent circuit for a
length of a 10 km. In particular each cell is con-
stituted by a series resistance, series inductance
and shunt capacitance. Loads are represented by
means of shunt resistors and inductances. The
10 MVAR SVS is simulated in the time domain,
including active losses and detailed modeling of
the thyristors. Concerning voltages, reference is



Fig. 3. SVS configuration.

made in the following to the phase voltage rms
values expressed in per unit on a 100 kV base; con-
sequently, the rated phase voltage is equal to 0.76.
In the assumed operating condition loads L3 and
L4 are equal to 100 MW and 67 MW, respectively,
both with a lagging power factor equal to 0.9. To
collect the input/output data necessary to iden-
tify model (2) let consider the open-loop scheme
shown in Figure 4 in which the nonlinear function

u(t)
f−1(α)

α

SVS
i(t) Power

System

v(t)

Fig. 4. Block scheme of the open-loop plant.

f(α) is given by (IEEE Working Group, 1994)

f(α) =
2α

π
− sin(2α)

π
− 1.

The values of u(t) and v(t) at the sampling
instants t = k Ts have been stored with a sampling
period equal to Ts = 1 ms with reference to a step
variation of u(t) from 0 to 0.4. Since Ts = 1 ms
the delay d is equal to 3. When u(k) is equal
to zero, the mean value of v(k) coincides with
the amplitude D of the no-load voltage v0(k). In
this case D = 0.757 has been determined. For a
correct identification of nM , nN , M(z) and N(z),
the value of D has been subtracted to the stored
data of v(k). To estimate nM and nN a classical
Least-Squares technique has been then applied to
calculate the residual prediction error, that is

R0 =
1
N

k=N∑

k=1

ε(k)2 .

If the condition
R0,nM+1 ≥ 0.8 R0,nM

is verified, the degree nM is no longer increased.
The same criteria stands for nN (Landau, 1990).
According to this procedure one has

nM = 2

nN = 0

M(z) = z2 − 1.831 z + 0.8404

N(z) = 0.0008866 .

and model (2) is particularized as

(
1− 1.831 z−1 + 0.8404 z−2

)
v(k)− 0.0008866 z−3u(k)

=
1− 1.831 z−1 + 0.8404 z−2

1− z−1 0.757 . (3)

At this point mapping model (3) in the s plane
one has (Franklin et al., 1990)

V(s) =
966.6 e−0.0034 s

(s2 + 173.8s + 9860)
U(s) +

0.757
s

(4)
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Fig. 5. Step response of model (6) (solid) and of
the scheme shown in Figure 4 (dashdot).

where V0(s) is expressed as

Ad(s)V0(s) = D (5)

being Ad(s) = s. It can be easily recognized that
model (4) presents two dominant complex poles
modeling the power system dynamics, while the
electronic actuator, whose dynamics are faster
than the dominant poles, is modeled only with
a delay term. By resorting to the first order Padè
approximation for the delay term e−0.0034 s yields

V(s) ≈ 966.6 (−s + 2/0.0034)
(s2 + 173.8s + 9860)(s + 2/0.0034)

U(s)

+
0.757

s
=

B(s)
A(s)

U(s) + V0(s). (6)

Figure 5 shows a comparison between the step
response of model (6) and of the scheme depicted
in Figure 4. The approximated linear model gives
an acceptable step response; the main difference
from the actual response appears at the end of
the rising edge. When the power system operating
conditions change, the coefficients of polynomials
A(s) and B(s) will vary as well as the bias
amplitude D. Conversely, the delay terms will be
obviously unchanged. In the remainder it will be
set Kp = 966.6. For control design purpose, the
polynomial B(s) appearing in (6) is factorized as
follows

B(s) = B−(s)B+(s) (7)

in which B−(s) contains the unstable zeros of
P (s) while B+(s) contains the remaining factors
of B(s). It is immediate to recognize that in this
case B−(s) = B(s) and, obviously, B+(s) = 1.

2.2 Model-following design

The regulator designed according to the model fol-
lowing approach is such that the relation between
the reference voltage Vref and the desired voltage
is given by

Vm(s) =
Bm(s)
Am(s)

Vref(s) (8)

where Bm(s) and Am(s) are assigned polynomials.
The regulator law assumes the following form

F (s)U(s) = H(s)Vref(s)−G(s)V(s) (9)
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which includes a feedback term with transfer op-
erator −G(s)/F (s) and a feedforward term with
transfer operator H(s)/F (s). The block scheme
representing the regulator structure is shown in
Figure 6. By combining equations (6) (7) and (9)
it is simple to obtain the closed-loop expression of
the voltage V which is given by

V(s) =
B(s)H(s)

A(s)F (s) + B−(s)G(s)
Vref(s)

+
A(s)F (s)

A(s)F (s) + B−(s)G(s)

(
D

Ad(s)

)
.(10)

To take into account the presence of the voltage
bias V0 the regulator should include its dynamic
expression (5), that is

F (s) = F̃ (s)Ad(s). (11)

According to (11) the expression (10) becomes

V(s) =
B(s)H(s)

A(s)Ad(s)F̃ (s) + B−(s)G(s)
Vref(s)

+
A(s)F̃ (s)

A(s)Ad(s)F̃ (s) + B−(s)G(s)
D . (12)

The polynomials F̃ (s) and G(s) are obtained by
solving the following Diophantine equation (Åström
and Wittenmark, 1989)

A(s) Ad(s) F̃ (s) + B−(s)G(s) = A0(s)Am(s) (13)

in which A0(s) is an assigned observer polynomial.
This equation has solution with

dgG(s) < dgA(s) + dgAd(s) = 4.

where dg stands for degree. In the following it is
assumed

G(s) = g3s
3 + g2s

2 + g1s + g0 .

In addition, the following conditions must be
fulfilled

Bm(s) = B−(s) B
′
m (14)

dgAm(s)− dgBm(s) ≥ dgA(s)− dgB−(s) (15)

dgA0(s) ≥ 2 dgA(s) + dgAd(s)− dgAm(s)−1(16)

Condition (14) imposes that B−(s) divides Bm(s).
The simplest structure for the polynomial Bm(s)
satisfying the imposed constrain is

Bm(s) = b1ms + b0m .

At this point, having in mind the expression of
B−(s), see model (6) and factorization (7), one
obtains that condition (14) is fulfilled if

b0m/b1m = −2/Td .

Furthermore, to assure an unitary dc gain of the
transfer function in (8) b0m must be equal to
Am(0). According to (14) one has

B
′
m =

Td Am(0)
2 Kps

.

Since the degree of Bm(s) is unitary, condition
(15) is satisfied if Am(s) has a degree greater or
equal to the one of A(s), see model (6). In the
reminder Am(s) is assumed of the fourth order.
Eventually, condition (16) is satisfied if the degree
of polynomial A0(s) is greater than two: in the
remainder, it will be set dgA0(s) = 3. According
to the degrees of polynomials Am(s) and A0(s) a
third order polynomial is assumed for F̃ (s), see
equation (13), that is

F̃ (s) = s3 + f̃2s
2 + f̃1s + f̃0 .

The coefficients of the polynomials F̃ (s) and
G(s) are calculated by solving a set of 7 linear
equations which are obtained by substituting all
the polynomials into (13). Once that F̃ (s) has
been determined the polynomial F (s) is obtained
through (11). It is simple to recognize that F (s)
is of fourth degree and it posses a root in s = 0.
Finally, the polynomial H is given by

H(s) = A0(s) B
′
m = h3s

3 + h2s
2 + h1s + h0 .

2.3 Regulator parameters adjustment laws

The adjustment mechanism has the objective to
vary the coefficients of the regulator polynomials
on the basis of the error e defined in (1) when
changes in power system occur. To pursue this
task the adaptation law is designed employing
the gradient approach (Åström and Wittenmark,
1989) to reduce the function

J(t) =
1
2

e2(t).

This is accomplished by changing the regulator
parameters in the direction of negative gradient
of J

d
dt

f̃i =−γf̃ ,i

∂J

∂f̃i

= −γf̃ ,i e
∂e

∂f̃i

i = 0, 1, 2

d
dt

gj =−γg,j
∂J

∂gj
= −γg,j e

∂e

∂gj
j = 0, 1, 2, 3 (17)

d
dt

hk =−γh,k
∂J

∂hk
= −γh,k e

∂e

∂hk
k = 0, 1, 2, 3

where γf̃ ,i, γg,j , γh,k are adequate positive rat-
ing factors. The implementation of laws (17) re-
quires the calculation of the sensitivity deriva-
tives. Based on (1), by subtracting (8) to (12) one
obtains the expression in the Laplace domain of
the error E(s) as

E(s) =
B(s)H(s)

A(s)Ad(s)F̃ (s) + B−(s)G(s)
Vref(s)

+
A(s)F̃ (s)

A(s)Ad(s)F̃ (s) + B−(s)G(s)
D



− Bm(s)
Am(s)

Vref(s).

The derivatives of E(s) with respect to the regu-
lator parameters are then

∂E(s)
∂f̃i

=− s i B−(s)Ad(s)

A(s)Ad(s)F̃ (s) + B−(s) G(s)
U(s)

∂E(s)
∂gj

=− s j B−(s)

A(s)Ad(s)F̃ (s) + B−(s) G(s)
V(s)(18)

∂E(s)
∂hk

=
s k B−(s)

A(s)Ad(s)F̃ (s) + B−(s)G(s)
Vref(s).

The derivatives (18) have been determined by
using equation (12) and

Ad(s)U(s) =
A(s)Ad(s)H(s)

A(s)Ad(s)F̃ (s) + B−(s)G(s)
Vref(s)

− A(s)G(s)

A(s)Ad(s)F̃ (s) + B−(s)G(s)
D .

At this point, making the following approximation

A(s)Ad(s)F̃ (s) + B−(s)G(s) ≈ A0(s)Am(s)

and denoting as Kp,n the new unknown value, the
derivatives (18) assume the following form

∂E(s)
∂f̃i

≈−Kp,n
s i+1(−s + 2/Td)

A0(s) Am(s)
U(s)

∂E(s)
∂gj

≈−Kp,n
s j(−s + 2/Td)
A0(s) Am(s)

V(s) (19)

∂E(s)
∂hk

≈Kp,n
s k(−s + 2/Td)
A0(s)Am(s)

Vref(s).

Finally, by expressing the derivatives (19) in term
of the differential operator p and substituting
in (17) yields

d
dt

f̃i ≈ γ̃f̃ ,i e(t)
[
p i+1(−p + 2/Td)

A0(p)Am(p)
u(t)

]

d
dt

gj ≈ γ̃g,j e(t)
[
p j(−p + 2/Td)
A0(p)Am(p)

v(t)
]

(20)

d
dt

hk ≈−γ̃h,k e(t)
[
p k(−p + 2/Td)
A0(p)Am(p)

vref(t)
]

where the gain Kp,n has been absorbed into γ̃f̃ ,i,
γ̃g,j and γ̃h,k, respectively.

3. SIMULATION CASE STUDY

To analyze the performance achievable by the
voltage regulator control scheme designed on the
basis of model reference adaptive approach, ac-
curate time-domain simulations have been run
with reference to a case study. The simulation is

performed in MATLAB/SIMULINK environment
by resorting also to Power System Blockset. Con-
cerning the model-following design, the assumed
reference model (8) is characterized by real poles
and a step response without overshoot, a rising
time between 10 and 90% equal to about 50 ms
(that is, 2.5 times the fundamental cycle) and
a settling time at ±2% equal to about 90 ms
(that is, 4.5 times the fundamental cycle). In the
adaptation laws (20) the rating factors γ̃f̃ ,i, γ̃g,j

and γ̃h,k have been chosen as follows:

γ̃f̃ ,0 = γ̃g,0 = γ̃h,0 = γ0 A0(0)Am(0)

γ̃f̃ ,1 = γ̃g,1 = γ̃h,1 = γ1 A0(0)Am(0)

γ̃f̃ ,2 = γ̃g,2 = γ̃h,2 = γ2 A0(0)Am(0)

γ̃g,3 = γ̃h,3 = γ3 A0(0)Am(0)

where γ0 = 105, γ1 = 10−1, γ2 = 10−6 and
γ3 = 10−8. It should be noted that this choice
for the rating factors is adopted because in (20)
the variables vref(t), v(t), u(t) and e(t) have been
expressed in p.u. values. The presented simula-
tion case study aims at showing the performance
achieved by the proposed adaptive voltage con-
trol scheme when the power system operating
condition is unknown. In particular, the operat-
ing condition is different from the one assumed
to identify the parameter values of model (4)
necessary to solve the model-following problem,
because the load L4 is increased by 20%, and
the voltage reference is assumed equal to 0.75.
Obviously, in this operating point the amplitude
of no-load voltage is unknown. Starting from this
condition, the power system is firstly subject to a
load variation, then to a topological change and
finally a new voltage reference value is imposed.
In particular, at time instant t = 0.3 s a 20%
step increase of the load L3 is considered. It must
be noted that the amplitude of such variation is
comparable to the rated power of the considered
SVS. Due to this overload, the transmission line
between busbar 3 and busbar 4 is disconnected
at time t = 0.6 s. Then a 2% step increase of
the voltage reference signal is imposed. The time
evolution of the controlled voltage at busbar 4 is
reported in Figure 7. For the sake of comparison,
in the same Figure it is also shown the time
evolution of the voltage at busbar 4 in the case
of classical design (IEEE Working Group, 1994)
which requires the adoption of a simple gain with
an integral action. The gain value has been set
equal to 170 according to the worst short-circuit
power of the electrical system. From the analysis
of Figure 7 it can be recognized that the adaptive
control scheme is able to restore the voltage to its
reference value equal to 0.75 in about 0.12 s after
the perturbation occurred. Contrary, the classical
scheme exhibits a slower response with amplitude
variations larger than the ones given by the adap-
tive scheme. In Figure 8 the time evolution of
the error given by (1) is shown. To analyze this
figure, it is worthwhile to note that during the
structural and topological changes of the power
system the reference model output is constant and
equal to 0.75; consequently, the time evolution of
the error exactly reproduces the time evolution of
the voltage. On the contrary, during the voltage
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reference step variation, the error evolution shows
the effectiveness of the adaptation task, which
guarantees a voltage response very close to the
one of the reference model in spite of the different
operating conditions of the system. After all, from
Figure 7 it can be easily verified that, in the case
of adaptive design, the rising time and the settling
time of the step response corresponds to the ones
characterizing the reference model. Eventually, in
Figure 9 the time evolution of the firing angle α is
reported, showing the command sent to the SVS
thyristors by the controller.

4. CONCLUSIONS

This paper has presented a nodal voltage control
scheme in power systems based on the adoption
of model-reference adaptive approach. Using a
simplified power system model, the voltage reg-
ulator parameters have been obtained by solving
the model-following problem. To counteract the
effects of unexpected and unpredictable changes
of power system operating conditions, an adjust-
ment mechanism varies the controller parameters

to guarantee robustness and an adequate per-
formance of the designed control scheme. The
proposed model-reference adaptive control system
has been applied to a Static VAR System con-
nected to a HV power system. Accurate numer-
ical simulations have been run to validate the
performance achievable by the proposed model-
reference adaptive control scheme.
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