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1. INTRODUCTION

This paper deals with modeling and interconnection
of open dynamical systems. The aim consists in de-
termining model structures able to both fit the dy-
namic behavior of a system and describe with a
high-fidelity its internal structure,i.e. its components
and their interconnexion relationships. Such mod-
els are essentially developed for analysis, simula-
tion or understanding of complex and unknown phe-
nomena. Since the seventies, several object-oriented
techniques have been developed for complex systems
modeling (Elmqvist, 1978; Cellier, 1991; Otter and
Elmqvist, 1997; Borutzky, 1999; Mann, 1999; Breed-
veld, 2004; Bastogne, 2004). These efforts have made
real the development of a lot of object formalisms and
in 1996, a unification attempt of existing languages
was initiated and led to a new specification language:
Modelica (Tiller, 2001). Despite these efforts, it seems
that due to differences of terminology,e.g.objectvs
system, main aspects of the object-orientation devel-
oped initially in computer science are not fully ap-

preciated in the systems science community. In fact,
the notions ofobject in computer science andsys-
temin automatic control, systemics or cybernetics are
similar. Nevertheless some basic differences can be
highlighted.

• The concept of object developed in computer sci-
ence was not initially associated with a temporal
semantic as this is the case in automatic control
with the notion ofdynamic system.

• In control applications, controllers are causal1

systems,i.e. based on the definition of input
and output variables, whereas physical systems
are non causal by nature (Cellier, 1991). These
differences of causality have to be taken into
account in the modeling procedure. However

1 In systems theory, the causality notion involves physical realiz-
ability. A system is non causal if its response occurs prior to the
input stimulus and causal otherwise. Herein, the question is which
variable is caused by the other ? If there is an invariant solution
the system is causal but if there is no solution,e.g.the chicken-egg
problem, the system is regarded as non causal.



contrary to the non-causal object-modeling tech-
niques, the systems theory is still based on a
causal perception of the process.

• The idea of object is based on concepts like in-
stantiation or inheritance which clearly increase
the modularity of the model,i.e. updating parts
of the model according to the process evolution
or easily removing an object without changing
the remainder.

• Finally, the representations based on the systems
theory,e.g.block-diagrams or bond graphs, can
be completely described by a mathematical ex-
pression,e.g.a state-space description. However
the object-oriented models of physical systems
are algorithmic by nature and have no particular
mathematical description.

This latter point is essential since it prevents all objec-
tive analysis of the model independently from its im-
plementation languages. That is a particularly crucial
issue for the model identification step which requires
to assess the identifiability of the model structure.
Moreover, the diversity of the existing languages and
their frequent evolutions can lead to the impossibility
to perpetuate and capitalize on the modeling effort.

Specifying the object-modeling paradigm in a mathe-
matical framework independently from any computer
language is therefore the problem addressed in this
paper. This problem is analog to the question of meta-
modeling in computer science. A lot of specification
languages have been proposed, but lately, an effort
has been made to standardise the notation, resulting in
the Unified Modeling Language (UML) (Rumbaugh
et al., 1999). Nevertheless, UML is based on discrete
dynamic models and therefore is not very well suited
to describe continuous-time behaviors. On the other
hand, the behavioral approach of the systems theory,
introduced by J.C. Willems in 1986 (Willems, 1986;
Willems, 1991) provides a mathematical formalism
based on set theory that is well suited to the inter-
connected systems modeling and may be a solution
to the addressed problem. We firstly propose to use
the Willems’ behavioral formalism as a specification
language of the object-oriented models devoted to in-
terconnected systems modeling. Secondly, the concept
of object, three object-relationships and an object-
oriented model structure called ’physical diagram’ are
specified. A few examples based on a mechatronic
system are also developed to illustrate each theoretical
point of the paper.

2. BEHAVIORAL REPRESENTATIONS OF AN
OBJECT

An object class is usually defined as a structure en-
capsulating data (state or attributes) and data opera-
tions (behavior). Instances of a class are the objects
representing the class in the model, they have the
same attributes and operations but may have different

attribute values. Parametersp and variablesw of an
object O will be notedO.p and O.w in the sequel.
This section aims at defining a general mathemati-
cal representation of an object class by describing it
as a special dynamic system through the behavioral
formalism of system theory introduced by Willems
in (Willems, 1986). Two behavioral representations of
an object class are proposed.

Definition 1. The absolute behavioral representa-
tion of an object classO is defined as follows:

O = (U∗

O
, B∗

O
), (1)

where:

• U∗

O
is the universal set,i.e. the set of elements

under consideration inO. A major difference
between the objects used at the origin in com-
puter science and those used for physical systems
modeling is that contrary to conventional objects,
physical phenomena are associated to a tempo-
ral semantics, physical systems are dynamic sys-
tems. Consequently, the universal set includes a
time axis. Parameters and variables are the two
other types of attributes used inO. The principal
utility of the encapsulation process remains the
privatization of the access to the data. Indeed,
the concept of object also makes it possible to
legalize and limit the access of a limited num-
ber of variables. The latter are generally entitled
external variables. The external variables of an
object will be described bymanifestvariables
and the internal or local variables bylatentvari-
ables. Hence, a mathematical expression of the
universal set is:

U
∗

O = {t, p∗, l∗(t), w∗(t)}

= TO × P
∗

O
× L

∗

O
× W

∗

O
, (2)

with: t ∈ TO, p∗ ∈ P∗

O
, l∗(t) ∈ L∗

O
, w∗(t) ∈

W∗

O
. × denotes the cartesian product,TO the

time axis,P∗

O
the parameter set,W∗

O
the man-

ifest signal set andL∗

O
the latent variable set.

t ∈ T denotes the time variable,p∗ : the vec-
tor of parameters,w∗(t): the vector of manifest
variables andl∗(t): the vector of latent variables.

• B∗

O
denotes the behavioral model. The latter

corresponds to the set of the admissible data
that the object can generate :B∗

O
⊂ U∗

O
. The

complete behavioral model of an object can be
expressed as follows:

B
∗

O
=

{

t, p∗, l∗, w∗

∣

∣

∣

∣

f(t, p∗, l∗, w∗) = 0
y = g(t, p∗, l∗, z∗, u∗)

}

,

(3)

wherew∗ = (u∗, y∗, z∗), u∗(t) andy∗(t) denote
input and output variables whilez∗(t) is a sub-
vector of manifest variables which cannot bea
priori qualified as inputs or outputs. The behav-
ioral equations ofO are spilt up into two parts.
The implicit equations are gathered intof(·) and



the explicit equations intog(·). B
∗

O
may be re-

garded as a set of admissible time trajectories,
i.e. the possible time behaviors of the variables.

Object classes can be combined with each other by
composition and generalization relationships in order
to create new object classes. These composition and
generalization links lead to consider a second behav-
ioral representation of an object.

Definition 2. Therelative behavioral representation
of an object classO is defined as follows:

O = (CO, HO, UO, BO), (4)

where:

• CO denotes the composition set. It contains the
object classes which composeO, e.g. CO =
{A,B} means thatO is composed of two object
classesA etB.

• HO denotes the generalization set. Classes are
arranged into specialization-generalization hier-
archies, subclasses provide specialised behavior,
whereas superclasses are more general. Data and
behavior are inherited down a hierarchy. The
generalization set ofO is notedHO, e.g.HO =
{A,B} means thatA and B are two super-
classes ofO.

The relative representation relies on the definition of
four sets instead of two for the absolute representation.
In other words, an absolute representation of an object
is a relative representation for which the setsCO and
HO are empty. An absolute representation has for ad-
vantage to completely define an object independently
of all other objects. On the other hand, the interest of
a relative representation is to simplify the definition
of an object by specifying only its own characteristics
and by not repeating the common points that it shares
with its components or superclasses.

3. DESCRIPTION OF OBJECT RELATIONSHIPS

3.1 Instantiation relationship

A class is a paradigm defining the behavior and the
variables for a particular type of object. Any object
designed from this paradigm is aninstanceof this
class. Instances are the representatives of the object
classes in the model. The class-instance relationship
is symbolized by⇉, e.g.O ⇉ A means thatA is an
instance of the classO.

Proposition 3.A class and its instances are identical
by their form and their behavior :

T


h


Q2


Pu


Pd

Q1


Figure 1. Tank:T-class

UA = UO (5)

BA = BO (6)

CA = CO (7)

HA = HO. (8)

However their parameters and their variables may
contain different values.

Example 4.Figure 1 depicts a generic tank with two
inlet and outlet openings at the bottom. This type of
tank can be described by the object-classT defined
by its absolute behavioral representation :

T = (U∗

T , B∗

T ), (9)

with :

U
∗

T
= R+ ×R+4 × {∅} × (R3+ ×R2) (10)

B
∗

T =















t,









ρ
g
A
h









,









L(t)
Pd(t)
Pu(t)
Q1(t)
Q2(t)









∣

∣

∣

∣

∣

∣

∣

∣

Eq.(12)















(11)









Pd(t) − Pu(t) = ρ · g · L(t)
Q1(t) + Q2(t) = A · dL(t)/dt
Pu(t) = 105

0 ≤ L(t) ≤ h









(12)

ρ, g, A andh are the parameters of the tank,i.e. the
density of the fluid contained inT, the gravitation
constant, the section area and the height of the tank.
Pu(t) andPd(t) are the pressures of the fluid at the
top and at the bottom of the tank respectively.Q1(t)
andQ2(t) are the input-output flow rates andL(t) is
the level of water in the tank. The empty set in the
equation (10) denotes the absence of latent variable.

Let us consider a particular case of tank with the same
characteristics asT but with :A = 1m2 andh = 3m.
A model of this tank, notedT1, is thus regarded as an
instance ofT and is defined by :

T1 ⇇ T(A = 1, h = 3). (13)

3.2 Composition and generalization relationships

Let O be an object class defined by its relative behav-
ioral description with eitherHO = {∅} andCO =
{A}, or CO = {∅} andHO = {A} whereA 6= O.
In the first case, the classO is composed of a classA
and in the second case the classA is a superclass of
O. Let (U∗

O
, B∗

O
) be the absolute representation ofO

with: U∗

O
= TO × P∗

O
× W∗

O
× L∗

O
. The following



proposition defines the consequences of the compo-
sition and generalization processes on the absolute
representation ofO.

Proposition 5.The composition and the generaliza-
tion relationships imply that the parameters ofA are
simply added to those ofO such that:

P
∗

O
= PO × P

∗

A
. (14)

The manifest and latent variables ofA are added to
the manifest and latent variables ofO respectively:

W
∗

O = W
∗

O × W
∗

A (15)

L
∗

O
= LO × L

∗

A
. (16)

The absolute behavioral model is then given by:

B
∗

O
=

{

BO ∩ B
∗

A
if UO ∩ U

∗

A
6= {∅}

BO × B
∗

A
if UO ∩ U

∗

A
= {∅}.

(17)

In other terms, ifO and A have no common vari-
able, the absolute behavioral model ofO is regarded
as the cartesian product ofBO and B∗

A
. However,

if the composition and generalization processes are
correctly established, the behavioral models ofO and
A are non disjoint,i.e. at least one common variable,
and the complete behavior ofO is the intersectionBO

andB∗

A
. From an algebraic point of view, the equation

(17) implies that the behavioral equations system of
O is augmented by the behavioral equations ofA. For
the composition process, the special case:A = O is
handled by setting:

CO = {O}
def
=⇒ CO = {∅}. (18)

V B y(t)

u(t)

x(t)
P1(t) P2(t)

Q2(t)Q1(t)

V AV
(a) Valve

10
u(t)

f (u(t))

(b) Actuator law

Figure 2. Valve:V-class

Example 6.Figure 2 depicts a control valve com-
posed of a body and an actuator. The object-classV

associated with the valve is described by its relative
behavioral representation:

V = (CV, HV, UV, BV) (19)

HV = {∅}

CV = {VA,VB}

UV = R+ × {∅} × {∅} × {∅}

BV =

{

t,

(

VA.y(t)
VB.x(t)

)∣

∣

∣

∣

VA.y(t) = VB.x(t)

}

VA denotes the object-classvalve actuatorandVB

the object-classvalve body. VA.y(t) and VB.x(t)
denote the position of the actuator stem and the rela-
tive position of the plug/seat respectively. This specific

notation implies thaty(t) andx(t) are two variables
defined inVA and VB respectively but not inV.
The behavioral equation ofBV corresponds to the
mechanical coupling between the plug of the valve
and the actuator stem. The object-classVB associated
with the body of the valve is defined by:

VB = (U∗

VB
, B∗

VB
) (20)

U
∗

VB
= R+ ×R×R× (R2 ×R2+)

B
∗

VB
=











t, Kv, x(t),







Q1(t)
Q2(t)
P1(t)
P2(t)







∣

∣

∣

∣

∣

∣

∣

Eq.(22)











(21)

(

Q1(t) = x(t) · Kv · (P1(t) − P2(t))
Q2(t) = −Q1(t)

)

(22)

Kv is a coefficient andP1(t)/P2(t), Q1(t)/Q2(t) de-
note the upstrem/downstream pressures and flow rates
of the valve. The object-classVA of the actuator is
defined by :

VA = (U∗

VA, B∗

VA) (23)

U
∗

VA = R+ × {∅} ×R×R

B
∗

VA
= { t, y(t), u(t)| y(t) = f(u(t))}

f(·) is defined in figure (2(b)) andu(t) denotes the
input signal of the actuator. The behavioral model of
the actuator is given by the characteristic lawf(·).
According to the definitions ofVB andVA, and the
proposition 5, the absolute behavioral representation
of V is given by:

U
∗

V
=R+ ×R×R3 × (R3 ×R2+).

B
∗

V
=















t,VB.Kv,

(

VA.y(t)
VB.x(t)

VB.∆P (t)

)

,









VA.u(t)
VB.Q1(t)
VB.Q2(t)
VB.P1(t)
VB.P2(t)









∣

∣

∣

∣

∣

∣

∣

∣

· · ·

(24)
VA.y(t) = VB.x(t)
VB.Q1(t) = VB.x(t) · VB.Kv · VB.∆P (t)
VB.∆P (t) = (VB.P1(t) − VB.P2(t))

VB.Q2(t) = −VB.Q1(t)
VA.y(t) = f(VA.u(t))















Example 7.Let C be the object-class of a controller
shown in figure 3(a) and described by:

C = (U∗

C, B∗

C) (25)

U
∗

C
= R+ × {∅} × {∅} ×R3

B
∗

C
=

{

t,

(

U(t)
W (t)
M(t)

)∣

∣

∣

∣

∣

U(t) = C(W (t), M(t))

}

The control lawC(·) of the controller is not specified.
Hence, the object-classC is incomplete and cannot be
used alone.U(t), W (t) andM(t) are the control, ref-
erence and measurement signals. Let us now consider
a level controller :LC based on a two states control
law. Therefore,LC is regarded as a subclass ofC and
is defined by:



LC = (CLC, HLC, ULC, BLC) (26)

CLC = {∅}

HLC = {C}

ULC = R+ ×R3+ × {∅} × {∅}

BLC =

{

t, h, ǫ(t)

∣

∣

∣

∣

C(ǫ) is given in figure (3(b))
ǫ(t) = C.W (t) − C.M(t)

}

In the definition ofLC, only the specific details of

C
U(t)

W (t)

M(t)

(a) Controller

U(t)

ε(t)

1 0 0 %0 %
−h/2 h/2

ε(t) = W (t)−M(t)

(b) Two-state controller
with hysteresis

Figure 3.LC-class

the level controller are given,i.e. one parameter:h,
and the control lawC. Based on the relative definitions
of C andLC, the absolute description ofLC is thus
given by:

U
∗

LC = R+ ×R+ ×R×R3 (27)

B
∗

LC
=

{

t, h, ǫ(t),

(

U(t)
W (t)
M(t)

) ∣

∣

∣

∣

∣

U(t) = C(W (t), M(t))
C(ǫ) is given in figure (3(b))
ǫ(t) = W (t) − M(t)

}

3.3 Compositions of object-relationships

Propositions 3 and 5 allow the modeler to systemat-
ically transform a relative behavioral representation
into an absolute representation. But the composition
and generalization relationships can also be combined
with each other. Firstly, let us specify each application:

• Let C(·) be a composition application such that
if A ∈ CO thenO = C(A) means thatO is
composed ofA or A is a component ofO. It is
straightforward to show thatC is reflexive, non
symmetric and transitive.

• LetH(·) be a generalization application such that
if A ∈ HO thenO = H(A) means thatO is
a subclass object ofA. It is straightforward to
show thatH is non reflexive, non symmetric but
transitive.

The two possible compositions of those object appli-
cations are thus:

• C = C(B) andB = H(A), i.e.C = C ◦ H(A):
B is an object class composed of another object
class that inherits from an object-classA

• C = H(B) andB = C(A), i.e.C = H ◦ C(A):
B is an object class inheriting from another ob-
ject class composed of the object classA.

M 1 M 4M 2
M 6M 5M 3 L1

L2

L3

Figure 4. Interconnections of modules

The complete behavioral representation ofC is then:

P
∗

C = PC × P
∗

A × P
∗

B (28)

W
∗

C = W
∗

C × W
∗

A × W
∗

B (29)

L
∗

C
= LC × L

∗

A
× L

∗

B
(30)

B
∗

C
=

{

BC ∩ B
∗

A ∩ B
∗

B if UC ∩ U
∗

A ∩ U
∗

B 6= {∅}

BC × B
∗

A
× B

∗

B
if UC ∩ U

∗

A
∩ U

∗

B
= {∅}.

4. PHYSICAL DIAGRAM

This section intends to find out the behavioral descrip-
tions of an object-oriented model structure, entitled
physical diagram, developed in (Bastogne, 2004).

Definition 8. A physical diagram ∆ is a model struc-
ture composed ofmodulesconnected bylinks. Its rel-
ative behavioral representation is defined as follows:.

∆ = (C∆, H∆, U∆, B∆) (31)

Its composition setC∆ is given by:

C∆ = {M, X} (32)

whereM = {M1, · · · , Mm} is a set of modules and
X = {L1, · · · , Ln} a set of links connecting the
modules.m and n are the number of modules and
links in ∆. H∆, U∆ and B∆ are generally empty.
However, additional data and equations that are not
included in the modules can be stated inU∆ andB∆.

Definition 9. A module M is an object-class associ-
ated with a real component or entity of the physical
system. Its relative behavioral representation is given
by M = (CM, HM, UM, BM) with: UM = TM ×
PM × LM × WM.

Definition 10. A link L is an object class which de-
scribes the connexion mode,i.e. the interconnection
equations, between two modules. Three classes of
links have been defined, entitledpower link, material
link and signal link. Their relative behavioral repre-
sentations are given by:

LP = (CLP
, HLP

, ULP
, BLP

) (33)

CLP
= HLP

= {∅}

ULP
= R+ × {∅} × {∅} ×R4

BLP
=















t,









α1(t)
ϕ1(t)
α2(t)
ϕ2(t)









∣

∣

∣

∣

α1(t) = α2(t)
ϕ1(t) + ϕ2(t) = 0

















LM = (CLM
, HLM

, ULM
, BLM

) (34)

CLM
= HLM

= {∅}

ULM
= R+ × {∅} × {∅} ×R2

BLM
=

{

t,

(

ϕ1(t)
ϕ2(t)

) ∣

∣

∣

∣

ϕ1(t) + ϕ2(t) = 0

}

(35)

LS = (CLS
, HLS

, ULS
, BLS

) (36)

CLS
= HLS

= {∅}

ULS
= R+ × {∅} × {∅} ×R2

BLS
=

{

t,

(

u(t)
y(t)

) ∣

∣

∣

∣

u(t) := y(t)

}

(37)

The physical links have four manifest variables com-
posed of two across variables (α1(t),α2(t)) and two
through variables (ϕ1(t),ϕ2(t)) in accordance with the
Firestone’s terminology. Their behavioral model,i.e.
their connection laws shown in equation (34), corre-
sponds to the generalized Kirchhoff laws applied to
their across/through variables. The material links have
two manifest variables composed of two through vari-
ables (ϕ1(t),ϕ2(t)). Their behavioral model,i.e. their
connection law shown in equation (35), corresponds
to a mass balance equation. The signal links have two
manifest variables composed of two input/output vari-
ables (u(t),y(t)) respectively. Their behavioral model,
i.e. their connection law shown in equation (37), is a
causal assignment between the output variable and the
input variable.

Behavioral descriptions of object-classes and object
relationships allow the complete description of the
physical diagram. The absolute behavioral represen-
tation of the physical diagram is finally given by:

∆ = (U∗

∆, B∗

∆), (38)

with:

U
∗

∆ = T∆ × P
∗

∆ × L
∗

∆ × W
∗

∆ (39)

B
∗

∆ = B∆ ∩ BC∆
∩ BH∆

(40)

P
∗

∆ = P∆ × PC∆
× PH∆

(41)

L
∗

∆ = L∆ × LC∆
× LH∆

(42)

W
∗

∆ = W∆ × WC∆
× WH∆

(43)

and:

BC∆
= BX ∩ BM (44)

= (B∗

L1
× · · · × B

∗

Ln
) ∩ (B∗

M1
× · · · × B

∗

Mm
)

ZC∆
= ZX × ZM (45)

= Z
∗

L1
× · · · × Z

∗

Ln
× Z

∗

M1
× · · · × Z

∗

Mm
.

whereZ = {P, W, L}. Accordingly, the behavioral
expression of a physical diagram may be completely
deduced from the ones of its modules. Equations (40)
and (45) finally show that analyzing the behavior
of a physical diagram leads to handle a differential
algebraic equation system.

5. CONCLUSION

The issue addressed in this paper is the mathemati-
cal representation of the object paradigm for phys-
ical system modeling. The behavioral formalism of
the systems theory, introduced by J.C. Willems in the
eighties, is advocated for this purpose. Two behav-
ioral representations of an object are expressed. These
two representations are equivalent, they just constitute
two different ways to define a same object. Three
relationships of the object-orientation : instantiation,
composition and generalization are examined. The be-
havioral description of an object-oriented model struc-
ture, entitledphysical diagram, is also proposed. It is
finally pointed out that making-up object models in the
behavioral framework generally leads to manipulate
differential-algebraic equations systems.
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