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Abstract: In this paper, state-derivative and especially output-derivative feedbacks for
linear time-invariant systems are derived using control approach similar to linear
quadratic regulator (LQR). The optimal feedback gain matrices are derived for the
desired performance. This problem is always solvable for any controllable system if the
open-loop system matrix is nonsingular. Explicit expression of the state-derivative gain
matrix is derived. Finally, simulation results are included to show the effectiveness of
the proposed approach. Copyright © 2005 IFAC.
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1. INTRODUCTION

The state feedback control problem for linear time-
invariant systems has been investigated in control
community during the last four decades using pole
placement approaches or using optimal control
approaches. However, this paper focuses on a special
feedback using only state derivatives instead of state
feedback. Therefore this feedback is called state
derivative feedback. The problem of system
stabilization and/or arbitrary pole placement using
state-derivative feedback naturally arises. To the best
knowledge of the authors there have been yet no
general study solving this feedback by pole
placement or by optimal control. The problem of
state derivative feedback has been investigated
within the treatment of generalized class of singular
linear dynamic systems using geometric approach in
(Lewis and Syrmos, 1991)) and (Kucera and Loiseau,
1994). Only recently, the authors have derived
(Abdelaziz and Valasek, 2004) a pole placement
technique by state-derivative feedback for SISO
time-invariant and time-varying linear systems and
then have generalized them for MIMO systems.

The motivation for the state derivative feedback in
this paper comes from controlled vibration
suppression of mechanical systems. The main sensors
of vibration are accelerometers. From accelerations it
is possible to reconstruct velocities with reasonable
accuracy but not any longer the displacements.
Therefore the available signals for feedback are
accelerations and velocities only and these are
exactly the derivatives of states of the mechanical
systems that are the velocities and displacements.
There have been published many papers (e.g.
(Preumont et al., 1993), (Bayon de Noyer et al.,
1997), (Olgac et al., 1997), (Dyke, 1996), (Kejval et
al., 2000)) describing the acceleration feedback for
controlled vibration suppression. However, the pole
placement approach for feedback gain determination
has not been used at all or has not been solved
generally.

The other problem with state derivative feedback for
controlled vibration suppression of mechanical
systems is that only several states are measured and
are available for control. Thus output derivative
feedback naturally arises. This paper deals with the
application of control similar to linear quadratic



regulator (LQR) for this purpose. It utilizes the
optimal output feedback control of linear systems
that has been solved by in papers by (Levine and
Athans, 1970), (Moerder and Calise, 1985) and
others with survey in (Syrmos et al., 1997).

2. STATE-DERIVATIVE FEEDBACK BY LQR

In this section, state-derivative feedback for linear
time-invariant systems using LQR similar approach
is derived.

2.1 LOR problem formulation
Consider a continuous, time-invariant, linear system

x(t)=Ax(t) + Bu(t), x(ty) = xg (1)

where x(f)eR" is the state, and u(f)e R" is the

control vector, (m < n), while AeR"”" and BeR"™"
are the system and control gain matrices,
respectively. The fundamental assumption imposed
on the system is that the system is completely
controllable. Further it is assumed that system matrix
A is of full rank.

The objective is to stabilize the system by means of a
linear state-derivative feedback

u(t) = —Kx(t) @)

that stabilizes the system and achieves the desired
performance. The closed-loop system dynamics is

x(t)=A.x(t), A.=I,+BK)'4 (3)

where I, is the n X n identity matrix. It is further
assumed that the matrix (I, + BK) is of full rank in
order that the closed-loop system is well defined.

The stabilizing control with good dynamic behaviour
is achieved control design that minimize a quadratic
cost or performance index of the type

J(x(0),u(t)) = min [ (x T (1)Qx(1) + u” (t)Ru(t))dt
4)

where Q is an n x n positive-definite (or positive-
semidefinite) symmetric state-derivative weighting
matrix and R is an m x m positive-definite symmetric
control weighting matrix. This formulation is only
similar to the original LQR one as the performance
index is based on state derivatives instead of states.
Nevertheless, similar properties as original LQR will
be derived.

Substituting (2) into J, the performance index is

J =7 (xT Q%+ (Kx) T R(Kx))dt = “
= [ (T (@ + K" RK)%)dt

The design problem is to select the feedback gain K
so that J is minimized subject to the dynamical
constraint (3). Then the LQR problem with state-
derivative feedback for linear systems is formulated
as follows:

Problem 1: Given the linear dynamical system (1)
and the symmetric matrices @ > 0 and R > 0. Find the

real feedback gain matrix KeR™" in the control
input (2) that minimizes the value of quadratic
performance index (5) and stabilizes the closed-loop
system (3) for any initial state x;.

2.2 Linear quadratic regulator analysis

Our main objective is to minimize the performance
index function in (5) with respect to the feedback
gain K. Suppose that we can find a constant positive-
semidefinite symmetric matrix P that satisfy (5), then

)'CT(Q + KTRK)J&: = —%(xTPx) =—x"Px—x"Px
(6)

Therefore, the performance index can be evaluated as

0T T g Tp | _
J=y (x (Q+K RK)x)dt=-x PxO e

=—xT (00) Px(0) + x T (0)Px(0)

Assuming that the closed-loop system is
asymptotically stable, i.e. all eigenvalues of A, have
negative real parts, so that x(f) vanishes with time
and x(o0)—0. Therefore, the performance index
converges to the positive optimal value

J = xT(0)Px(0) (8)
Thus the performance index J can be obtained in

terms of the initial conditions x(0) and matrix P.
From (3) one can obtain the following relation

x=A'x, A7l =471, +BK) (9)
Then, equation (6) can be rewritten as

T (Q@+K"RK)x=-x"(PA;' + 47T P)x (10)

Comparing both sides of the above equation

-1 -T T _

PA; +A, P+ K RK+0=0 (11)
By the second method of Lyapunov, if 4. is stable
matrix, there exists a positive-definite matrix P that

satisfies the above equation. Hence, our procedure is
to determine matrix P. From (9) we can write

A=A v AT BK,and 4. = 4T+ KTBTATT
(12)

Substituting in (11) one can obtain



PA ' +A'BK)+( AT+ KTBTAT )P+

(13)
+KTRK+0Q=0
PA' 4+ AP+ PAT'BK+KTBTATTP+ (14)
+K"RK+0Q=0
Since R is positive-definite symmetric matrix
R=T'T, (15)

where T is a nonsingular matrix. Substituting in (14)

PA '+ A TP PAT'BEK+KTBTATTP+

+K'T"TK+0=0
which can be reformulated as

(16)

PA '+ AP+ (@K +T "BTAT TP (TK +
+T "BTATP)-PA'BR'BT A TP+0=0
(17)

The minimization of J requires the minimization of

TTK+T "B A 'PT 0K+ T "B AT P)x

(18)

with respect to K. Since this last expression is
nonnegative, the minimum occurs when it is zero

TK=-T""BTA7 TP (19

The optimal gain matrix K is
K=-T'T"BT4A"P=-R'BTATP (20

Finally, the optimal stabilizing control law is given
by
u(t) = -Kx(t)= R'BT 47T Px(t) Q21

The matrix P in (21) must satisfy (14) or the
following algebraic Riccati equation (ARE)

PA '+ 4P PAT'BRT'BTATTP1r0=0 (22
0

2.3 Linear quadratic regulator solution

The computation of LQR similar state derivative
feedback is transformed into the solution of the
corresponding matrix Riccati equation (22). There
are many efficient algorithms for its solution. Using
the well known theorem about unique solvability of
Riccati equation (e.g. Lewis, 1992) it follows that the
Riccati equation (22) has unique positive
semidefinite solution if the pair (47, B) is
stabilizable and (VQ, A7) is observable Based on that
the necessary and sufficient conditions for the
existence of LQR similar problem with state-
derivative feedback can be proven. Then the
stabilization problem of state derivative feedback is
transformed into the solution of the equation (22).

Theorem 1

The LQR similar problem of state derivative
feedback for the real pair (A4, B) is solvable if (4, B)
is stabilizable, (NQ, A) is observable and A is
nonsingular.

Proof: The pair (A4, B) is stabilizable means that the
pair (4, B) is controllable, i.e. the controllability
matrix has full rank. The system matrix A is
nonsingular and using the state transformation by the
matrix A it follows that the controllability matrix (A™
, B) has also full rank. Similarly if the pair (VQ, 4) is
observable then also the pair (VQ, A”') is observable.
Hence the resulting closed-loop system matrix Ac is
stable. m

Comment: The state-derivative feedback by LQR can
be also derived from traditional state feedback by
LQR. Let substitute (1) into the performance index
(4) obtaining the traditional LQR problem J =

= [(xTATQAx+u" (R+BTQB)u+2x" AT QBu)dr
0

It results into the optimal feedback gain K, . Then

Uop =K o x = -K x= —K(Ax+Bu0pt)=

=—K(Ax+B(-K ,,x)) = —K(Ax - BK ,,, )x

It gives K = K, (A— BK ,; )~ However, to derive

the output-derivative feedback by LQR from
traditional output feedback by LQR is difficult.
Therefore the derivation is provided in this way.

3. OUTPUT-DERIVATIVE FEEDBACK BY LQR

In many practical applications, a complete set of
state-derivatives is not directly available for feedback
purposes. Therefore, the LQR with output-derivative
is proposed that utilize only a few measurements of
the system. Consider a time-invariant linear system

%(t) = Ax(t) + Bu(t), %(ty) = %

23
y() = Cx(0) )

where x()eR" is the state, p(¢) eR” is the measured

output and u(r)eR™ is the control input, (m < n),

while AeR"", BeR"" and CeR"”" are the system,
control and output gain matrices, respectively. Again
the system is supposed to be completely controllable
and observable and the system matrix 4 to have full
rank. The objective is to stabilize the system by
means of a linear output-derivative feedback control

u(t)=—Fy(t) 24

that stabilize the system and achieve the desired
performance of the closed-loop system

(1)= Ao x(t), A= (I, + BFCY'A (25

In what follows, we assume that (I, + BFC) has a full
rank in order that the closed-loop system is well
defined. Additionally, 4., is to be asymptotically



stable. This may achieved by selecting the control
input u(f) to minimize a quadratic performance index

J(x(0),u(1)) = min [ (%7 ()Qx(r) + u" (1) Ru(t))dt

(26)
where Q > 0 is symmetric state-derivative weighting
matrix and R > 0 is symmetric control weighting
matrix. Substituting (24) into J, the PI is

J =[7 (&7 Qx +(FCx)T R(FCx))dt = o
=7 T (©@+CT"FTRFC)x)dt

Then the LQR problem with output-derivative
feedback for linear systems is formulated as follows:

Problem 2: Given the linear dynamical system (23)
and the symmetric matrices @ > 0 and R > 0. Find the

feedback gain matrix FeR™" in the control (24) that
minimizes the value of PI (27) and stabilizes the
closed-loop system (25) for any initial state xo.

3.1 Output linear quadratic regulator analysis

Suppose that we can find a constant, positive-
semidefinite, symmetric matrix P that satisfy (27),
then

xT(@+CTFTRFC)x = —i(xTPx) =
dt (28)
=—x Pxe—xTPx

The performance index can be evaluated as

J =17 (xT(@+CTFTRFC)x)d1 =—xTPxO -

=—xT (00) Px(o0) + x T (0)Px(0)
(29)
Since we assume that the closed-loop system is
asymptotically stable, then x(c0)—0, it holds

J = x 1 (0)Px(0) (30)

Thus, the performance index can be obtained in terms
of the initial conditions x(0) and P. Using

x=Ax, A} = A7, + BFC) (31)
the equation (28) can be rewritten as

xT(@+CTFTRFC)x=-xT(PA;} + 47} P)x

(32)

Comparing both sides of (32) for all state-derivative
trajectories, Lyapunov equation is obtained

g=PA; + A P+CTFTRFC+0=0 (33)

If F and Q are given a constant, symmetric, positive-
semidefinite matrix P may be computed from this
equation. Now, we may write the PI as

J = tr(PX) (34)

where the n x n symmetric matrix X is defined by
X = x(0)x T (0) (35)

Therefore, the problem of selecting F to minimize J
subject to the dynamical constraint (25) on the state-
derivative is equivalent to the algebraic problem of
selecting F to minimize J subject to constraint g on
the auxiliary matrix P. To solve this modified
problem, we use the Lagrange multiplier approach to
modify the problem yet again according to (Lewis,
1992). Thus, adjoin the constraint to the PI by
defining the Hamiltonian function

H=tr(PX) + tr(gS) (36)

with § a symmetric » X n matrix of Lagrange
multipliers which still needs to be determined. Then
our constrained optimization problem is equivalent to
the simpler problem of minimizing (36) without
constraints. Taking the partial derivatives of H with
respect to all the independent variables P, § and F
equal to zero and utilizing that

A=A+ a'BFC, A =4 +CcTFTBT 47T
(37)

Then the necessary conditions for the solution of

LQR problem with output-derivative feedback are

OZZ—I;:g =PA,) + A, P+CTFTRFC +Q(38)
OoH 1 -T
0=—5 =AcS+54; +X  (39)
oH

0= - 2RFcSCT +2BTA7TPSCT  (40)

The first two of these are Lyapunov equations and
the third is an equation for the feedback gain F. If §
> 0 in (41) then CSC" is nonsingular, then (40) can
be solved to obtain the optimal output-derivative
feedback gain as

F=-R'B" A "psc"(csc™)™! (41)

Unfortunately, in many applications the initial state-
derivatives of the system x(0) are usually unknown,
so the optimal performance index can be obtained but
with its expected value, that is E{J}. We assume that
x(0) is uniformly distributed on the unit sphere and X
=1, Then

J=1t(P) (42)

To obtain the output-derivative feedback gain
minimizing the performance index (26), we need to
solve the three coupled equations (38)-(39). The
equations for P, § and F are coupled nonlinear
matrix equations in three unknown. Numerical
techniques can be used for solving these matrix
equations (Moerder and Calise, 1985, Lewis, 1992).
The iterative numerical technique varies F based on



changes in J. There are more than one local
minimum and global optimality is not guaranteed.
The found optimal gain may depend on the initial
guess that must guarantee an initial stabilizing
controller, which is also a nontrivial problem.
However, the determination of the globally optimal
solution is still a difficult task. The computational
algorithm for solving the LQR problem with output-
derivative feedback is following:

Algorithm: /nput: Real matrices A, B, C, where A4 is
nonsingular, and symmetric weighting matrices Q >
Oand R> 0.

Step 1: Initialize: Set £ = 0, and determine a gain F
so that (I, + BF,C) 'A is asymptotically stable.

Step 2: k-th iteration: Set A, = (I, + BF,C)'A, and
solve for P,and S, in

0=PA' +A4,"P+C"FTRFC+Q
43)
0=A'S+S4 " +X
Set J, = tr(PX) and evaluate the gain update
direction

AF =—R7'BT47TpscT(csc™)y ™ - F, (44)

Update the gain by Fy., = F; + aAF where a is
chosen so that (I, + BF, kHC)’lA is asymptotically
stable and J;.1 = tr(Py1X) < Jp. If Jiuq and J;, are close
enough to each other, go to Step 3, otherwise, set k =
k+1 and go to Step 2.

Step 3: Terminate: Set the optimal output-derivative
gain matrix is F = Fy and J = Jy4.

The aforementioned algorithm requires the selection
of an initial stabilization gain matrix F;. In this work,
first the full state-derivative feedback problem is
solved wusing previous technique, and then it
constructs the initial stabilizing output-derivative
feedback gain matrix by solving the following
equation in the least-square sense

K=F,C (45)
where K is the full state-derivative feedback gain
matrix.

4 ILLUSTRATIVE EXAMPLE

The mechanical system of vibration isolation is in
Fig. 1. The dynamic equation of this system,
assuming small angle ¢, can be described in the state-

space form using the state vector
X(l‘) = [xl b %) ).Cl )232 ]T as:
0 0 1 0 0 o0
_ 0 0 0 1 0 0 |u
X = X+
—kicy —kyey —biep —byey e ¢y \un
—kicy —kyep —biey —bye o

and ¢ = 0.5(x; — x,)/L, m and / represent the mass and
inertia of the mass, k; and &, are the spring constants,
b, and b, are the damper constants, x; and x, are the
mass displacement from both sides, x; is the vertical
displacement of the center of mass, ¢ is the
inclination angle of the mass with the horizontal, 2L
is the distance between two supporting points, and u;
and u, are the control inputs.

L ]
uszJ |:J uj
bk, k| b1

Fig. 1 Vibration isolation example

The model parameters are taken as m = 10 kg, / =1
kg.m®, L =1m, k; = 500 N/m, k, = 700 N/m, b, = 10
N.s/m and b, = 20 N.s/m. The original system poles
are {—15.1384+31.1738j and —1.3616+10.7106j}.
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Fig. 2 Response using state-derivative feedback.

First the LQOR with state-derivative feedback is
computed. The performance index weighting
matrices Q and R are chosen as @ = diag{10000, 10,
10, 10} and R = diag{l, 1}. The feedback gain
matrix is

_( 98.0081 —6.5270 1.5875 —1.5119
| -4.6622 356412 —0.2978 1.9490)

Then the eigenvalues of the system are {-23.1893, —
59365 and -5.6331£10.1242j}. The transient
response of the closed-loop system is shown in Fig. 2
from the initial state xo = [-0.01, 0.02, —0.02, 0.01]".

Then the LOR with output-derivative feedback is
computed. The output vector, that utilize only




acceleration measurements of the mass, can be
obtained as
. 0 0 1 0).
= X
Y=o 0 0 1

For simulation, the weighting matrices @ and R of
the performance index are Q = diag{le8, 1, 1, 1} and
R = diag{1, 1}. The initial gain is taken as

(~1.1950 —2.2384
"7 10977 0.9412)

The computed feedback gain matrix is

g _[~10213 ~1.0896
| 3.5659  1.2723)°

The resulting closed-loop eigenvalues are
{-313.4212, -49.8538, and —1.3879 £ 10.3777j}. The
simulation results are displayed in Fig. 3 from initial
state xo = [-0.01, 0.02, —0.02, O.OI]T. In particular,
the performance index J decreases during iterations
from 2.4615%10” to 1.5160*10°.
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Fig. 3 Response using output-derivative feedback.

5. CONCLUSIONS

This paper has presented a linear quadratic regulator
similar control with state-derivative and output-
derivative feedbacks for linear time-invariant
systems. The optimal gains for the LQR are derived.
The necessary conditions to ensure solvability are
that the system is controllable and the open-loop

system matrix is nonsingular. The main result of this
work is an efficient computational algorithm for
solving the optimal linear quadratic regulator with
state-derivative and output-derivative feedbacks. The
simulation results prove the feasibility and
effectiveness of the proposed technique.
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