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Abstract: Given a plant and a feedback controller it is natural to ask: How much
uncertainty can be tolerated by the closed-loop, while achieving a specified level of
performance? Here, a characterisation of this question is formulated in terms of an
optimisation problem with a cost that reflects the size of weights used to quantify
system uncertainty and a structured singular value constraint, which captures the
specified level of robust performance. In the case of unstructured uncertainty the
problem can be solved as a family of convex problems pointwise in frequency. An
iterative algorithm is developed for the case of structured uncertainty.
Copyright c©2005 IFAC
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1. INTRODUCTION

It is well-known (Zhou et al., 1996; Skogestad and
Postlethwaite, 1996) that the structured singular-
value (introduced by Doyle (1982)) can be used
to determine whether a particular level of closed-
loop performance is achieved with all plants in
a specified set, when weighted H∞ norms are
employed to quantify performance and the size of
the uncertain plant set, which could be structured.
Consider, for example, the general interconnection
structure shown in Figure 1, where

G =

(

G11 G12 G13

G21 G22 G23

G31 G32 G33

)

1 Funded in part by the Centre for Sensor Signal and

Information Processing (CSSIP) under the Cooperative

Research Centre scheme of The Commonwealth Govern-

ment of Australia and the Australian Research Council.

is a generalized plant constructed from a nominal
model of the plant and so-called performance and
uncertainty weights, so that: 2

(i) The Upper Linear Fractional Transformation
(LFT)

Fu

((

G11 G13

G31 G33

)

,∆

)

:= G33(s) + G31∆(I − G11∆)−1G13

describes the uncertain plant set as ∆ varies
over the unit ball

2 For notational convenience everything is taken to be

square. This is without loss of generality because a square
structure can be achieved via the inclusion of dummy

inputs and outputs as required.
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Fig. 1. General LFT Interconnection Structure

B(∆) := {∆ ∈ Hr×r
∞ : ‖∆‖∞ < 1 and

∆(s) ∈ ∆ for all s ∈ C̄+}, (1)

where the block diagonally structured set

∆ := { diagf
i=1(Iαi

⊗ ∆i) : ∆i ∈ C
βi×βi and

f
∑

i=1

αiβi = r} ⊂ C
r×r, (2)

the Kroneker matrix product is defined by
A ⊗ B := [aijB], H∞ denotes the standard
Hardy ∞-space (i.e. stable transfer func-
tions) and ‖ · ‖∞ the associated norm; and

(ii) For a given controller K, the Lower LFT

F`

((

G22 G23

G32 G33

)

,K

)

:= G22 + G23K(I − G33K)−1G32

= Fu(F`(G,K), 0)

accounts for all nominal (weighted) closed-
loop transfer-functions to be used for gauging
performance.

Then (Packard and Doyle, 1993; Zhou et al., 1996)
Fu(F`(G,K),∆) ∈ Hm×m

∞ and

Fu(F`(G,K),∆)‖∞ ≤ 1 for all ∆ ∈ B(∆)

if, and only if, F`(G,K) ∈ H
(m+r)×(m+r)
∞ and

sup
ω∈R∪{∞}

µ∆T
(F`(G,K)(jω)) ≤ 1,

where µ∆T
denotes the structured singular value

taken with respect to the structured set

∆T := {diag(∆,∆p) : ∆ ∈ ∆ and ∆p ∈ C
m×m}.

Now, more specifically, consider the uncertain
closed-loop system shown in Figure 2, where P is a
nominal model of an irrigation channel, the inputs
and outputs of the controller K are, respectively,

the water level errors relative to set points and
the positions of gates which regulate water flow,
the disturbances d and w model water off-takes to
farms and gate position uncertainty, respectively.
For modelling details see Li et al. (2004) where, for
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Fig. 2. A Closed-Loop Interconnection

a controller K described therein, the structured
singular value result just described is used to
verify that ‖Wp(I + P (I + ∆Wu)K)−1‖∞ ≤ 1
for all ‖∆‖∞ < 1, with the particular perfor-
mance and uncertainty weights Wp and Wu shown
in Figure 3. In particular, the corresponding µ-
curve, which is shown in Figure 4, is less than
unity over all frequencies. Observe, however, that
particularly over the lower frequency range, the
value of µ is much less than unity. What might
one conclude from this? Two possibilities are:

(i) The system could achieve more demanding
performance requirements over the low fre-
quency range (i.e. Wp could be larger at
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Fig. 3. The inverse of the performance weight Wp

and the multiplicative uncertainty weight Wu
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Fig. 4. µ-curve for the performance and uncer-
tainty weights Wp and Wu shown in Figure 3

low frequencies), for the level of robustness
characterised by the uncertainty weight Wu;

(ii) The system could tolerate more uncertainty
over the low frequency range (i.e. Wu could
be larger at low frequencies), for the level
of performance characterised by the perfor-
mance weight Wp.

In view of these possible conclusions, it is natural
to ask:

(i) For a specific uncertain plant set, what level
of performance (measured in terms of the ∞-
norm) can be achieved in closed-loop?

(ii) How much uncertainty can be tolerated by a
given closed-loop, while achieving a specified
level of performance (measured in terms of
the ∞-norm)?

The first question is addressed in Lanzon and
Cantoni (2003), where the idea of skewed-µ in-
troduced by Fan and Tits (1992) is extended
to accommodate variation of the required scal-
ing over frequency and performance channels. A
corresponding algorithm for the synthesis of a
controller and a weight function which reflects the
achievable level of robust performance is also pre-
sented in Lanzon and Cantoni (2003). The second
question is investigated along a similar line in this
paper. In particular, the question is formulated in
terms of an optimisation problem with a cost that
reflects the size of weights used to quantify sys-
tem uncertainty and a structured singular value
constraint, which captures the specified level of
robust performance. It is shown that solving the
optimisation problem can yield a µ-curve which is
close to unity across frequency, as is necessary to
answer the second question.

2. FORMULATION OF THE OPTIMISATION
PROBLEM

Towards quantifying the level of uncertainty that
can be tolerated by a given closed-loop, while

achieving a specified level of performance, con-
sider the LFT interconnection structure shown
in Figure 5. Here the uncertainty weight W has
been purposefully omitted from the construction
of the generalised plant G, which includes a nom-
inal plant model and performance weights. Fur-
thermore, it is assumed that K achieves nom-
inal closed-loop stability, in that F`(G,K) ∈

H
(m+r)×(m+r)
∞ .

∆
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de

W

Fig. 5. LFT configuration for quantifying tolerable
uncertainty

Now, let the structured sets ∆ and B(∆) be as
defined in (1) and (2). Then from the preceding
discussion, Fu (F`(G,K),∆) ∈ Hm×m

∞ and

‖Fu (F`(G,K),∆) ‖∞ ≤ 1 for all ∆ ∈ B(∆) (3)

if, and only if,

sup
ω∈R∪{∞}

µ∆T

((

W 0
0 Im

)

F`(G,K)(jω)

)

≤1, (4)

where

∆T :={diag(∆,∆p) : ∆∈∆ and ∆p∈C
m×m}.(5)

The level of tolerable uncertainty could, as such,
be quantitatively determined by appropriately
maximising some measure of the size of the un-
certainty weight W , while ensuring that (4) is
satisfied. To this end, consider the following op-
timisation problem:

Problem 1. Given an optimisation directionality
function

V ∈ V := {diagr
i=1(vi) : vi ∈ H2},

where H2 denotes the standard Hardy 2-space,

min
W∈W

‖V W−1‖2
2

subject to (6)

sup
ω∈R∪{∞}

µ∆T

((

W 0
0 Im

)

Fl(G,K)(jω)

)

≤ 1,



where the set of permissible uncertainty weights
is defined by

W := {diagr
i=1(wi) : wi,

1

wi

∈ H∞}

and ‖ · ‖2 denotes the H2-norm.

As it stands, this problem is not computationally
straightforward, since the µ-constraint is difficult
to handle. Before discussing this aspect of the
problem, however, it is instructive to briefly dis-
cuss the role of the optimisation directionality
function V . First observe that

‖V W−1‖2
2 =

∫ ∞

−∞

n
∑

i=1

∣

∣

∣

∣

vi(jω)

wi(jω)

∣

∣

∣

∣

2

dω, (7)

where wi(jω) (resp. vi(jω)) is the i-th diagonal
element of W (jω) (resp. V (jω)). From this de-
composition, it can be seen that the cost func-
tion 1/‖V W−1‖2

2 is a cumulative measure of
the frequency-dependent size of the uncertainty
weights wi(jω). Each uncertainty weight wi(jω)
is itself weighted across frequency by an optimi-
sation directionality vi(jω). This can be used to
steer the optimisation by choosing vi(jω) to be
large (resp. small) where it is expected that the
corresponding uncertainty weight wi(jω) should
be large (resp. small). 3 Moreover, note that any
possible inconsistency between the directionality
functions, and the level of robust performance
specified by the performance weights within the
generalised plant G, is resolved through the opti-
misation over the uncertainty weights.

3. SOLVING THE OPTIMISATION
PROBLEM

As mentioned above, the optimisation Problem 1
is difficult to solve because of the µ-constraint.
In this section, it is argued that the µ-constraint
can be replaced by one that is more amenable
to computation. This may or may not introduce
some conservatism as discussed below.

For a given matrix M ∈ C
r×r, it can be shown

that (Packard and Doyle, 1993; Zhou et al., 1996;
Skogestad and Postlethwaite, 1996)

µ∆(M) ≤ inf
D∈C(∆)

σ̄(DMD−1),

where σ̄(·) denotes the maximum singular value,
∆ is the structured set defined in (2) and 4

3 As also pointed out in Lanzon and Cantoni (2003), the

direction of steepest descent of
∑

r

i=1
| vi

wi
|2 is dominated

by the smallest ratio
∣

∣

wi

vi

∣

∣.
4 In the definition of C(∆) it is possible to replace the
constraint det(D) 6= 0 with the constraint D = D∗ > 0,
without loss of generality (Zhou et al., 1996).

C(∆) := {D ∈ C
r×r : det(D) 6= 0 and

D∆ = ∆D for all ∆ ∈ ∆}. (8)

In general, equality does not hold, but there are
situations in which it does (Packard and Doyle,
1993; Zhou et al., 1996). Similarly, with ∆T as
defined in (5), it follows that

sup
ω∈R∪{∞}

µ∆T

((

W 0
0 Im

)

F`(G,K)(jω)

)

≤ inf
D1∈D(∆)

d2, 1

d2
∈H∞

∥

∥

∥

∥

(

D1W 0
0 d2Im

)

F`(G,K)

(

D
−1

1
0

0 1

d2
Im

)∥

∥

∥

∥

∞

= inf
D∈D(∆)

∥

∥

∥

∥

(

DW 0
0 Im

)

F`(G,K)

(

D−1 0
0 Im

)∥

∥

∥

∥

∞

, (9)

where

D(∆) := { D ∈ Hr×r
∞ : D−1 ∈ Hr×r

∞ and

D(s) ∈ C(∆) for all s ∈ C̄+}. (10)

Note that the upper bound in (9) is more
amenable to computation than the structured sin-
gular value itself. As such, the question of how
much uncertainty can be tolerated by a given
closed-loop system, while achieving a specified
level of performance, could be addressed in terms
of the optimisation problem:

Problem 2. Given an optimisation directionality
function V ∈ V,

min
W∈W

‖V W−1‖2
2

subject to (11)

inf
D∈D(∆)

∥

∥

∥

∥

(

DW 0
0 Im

)

F`(G,K)

(

D−1 0
0 Im

)∥

∥

∥

∥

∞

≤ 1.

In general, the constraint is not convex. However,
as shown in the following subsection, the problem
can be reformulated in terms of a problem that
is convex pointwise in frequency, when the uncer-
tainty set is unstructured. An iterative algorithm
is developed in a subsequent subsection for the
more general case of structured uncertainty.

3.1 The case of unstructured uncertainty

Consider the case in which the system uncertainty
is modelled to be unstructured (i.e. in the defini-
tion (2) of ∆, f = α1 = 1 and β1 = r). Then
the relationship (9) becomes (Packard and Doyle,
1993; Zhou et al., 1996)



sup
ω∈R∪{∞}

µ∆T

((

W 0
0 Im

)

F`(G,K)(jω)

)

= inf
d1, 1

d1
∈H∞

∥

∥

∥

∥

∥

∥

(

d1W 0
0 Im

)

F`(G,K)





1

d1
Ir 0

0 Im





∥

∥

∥

∥

∥

∥

∞

= inf
d, 1

d
∈H∞

∥

∥

∥

∥

∥

(

W 0
0 dIm

)

F`(G,K)

(

Ir 0

0
1

d
Im

)∥

∥

∥

∥

∥

∞

. (12)

As such, in this case, the optimisation Problems 1
and 2 are equivalent and, furthermore, they can be
reformulated in terms of a problem that is convex
pointwise in frequency:

Problem 3. Given an optimisation directionality
function V = diagr

i=1(vi) ∈ V,

min
W=diagr

i=1
(wi)∈W

∫ ∞

−∞

r
∑

i=1

|vi(jω)|2

|wi(jω)|2
dω

subject to (13)

∀ ω ∈ R ∃ δω so that

F`(G(jω),K(jω))

(

Ir 0
0 δωIm

)

F`(G(jω),K(jω))∗

≤

(

diagr
i=1(1/|wi(jω)|2) 0

0 δωIm

)

.

Note that at each frequency the constraint in
Problem 3 is convex in δω and 1/|wi(jω)|2, i =
1, . . . , r. Indeed, since the sum in the cost is always
non-negative, Problem 3 can be approximately
solved pointwise in frequency using standard LMI
tools (Gahinet et al., 1995; Boyd et al., 1993).
If required, transfer function characterisations of
W and D can be obtained via interpolation of
the pointwise solutions, followed by spectral fac-
torisation. State-space methods, similar to those
described in Lanzon and Cantoni (2003) can then
be used to refine the pointwise solution.

3.2 An iterative algorithm for the case of structured
uncertainty

In the case that ∆ is structured, the following
iterative approach could be employed to obtain a
local solution the optimisation Problem 2:

(i) Set i = 0 and λ?
0 = ‖V W−1

0 ‖2
2, with W0 ∈ W

taken to satisfy

inf
D∈D(∆)

∥

∥

∥

∥

(

DW0 0
0 Im

)

F`(G,K)

(

D−1 0
0 Im

)∥

∥

∥

∥

∞

< 1,

where D(∆) is defined (10).
(ii) Solve

θ?
i := argmin0≤θ≤1θ

subject to (14)

inf
D∈D(∆)

∥

∥

∥

∥

(

DWi 0
0 Im

)

F`(G,K)

(

D−1 0
0 Im

)∥

∥

∥

∥

∞

< θ,

and select Di ∈ D(∆) so that
∥

∥

∥

∥

(

DiWi 0
0 Im

)

F`(G,K)

(

D−1
i 0
0 Im

)∥

∥

∥

∥

∞

≤ θ?
i .

(iii) Set i = i + 1 and solve

Wi := argminW∈W‖V W−1‖2
2

subject to (15)
∥

∥

∥

∥

(

Di−1W 0
0 Im

)

F`(G,K)

(

D−1
i−1 0
0 Im

)∥

∥

∥

∥

∞

≤ 1,

and let λ?
i := ‖V W−1

i ‖2
2.

(iv) If |λ?
i − λ?

i−1| is sufficiently small then stop,
else return to Step (ii).

Observe that the intermediate optimisation prob-
lems (14) and (15) can both be reformulated as
convex problems, either pointwise in frequency,
as in Problem 3 above, or using state-space tech-
niques similar to those described in Lanzon and
Cantoni (2003). Furthermore, note that since
Wi−1 is always feasible for Step (iii), λ?

i ≤ λ?
i−1

at each iteration.

4. CONCLUDING EXAMPLE

Consider the robust performance problem de-
scribed in the introduction and illustrated in
Figure 2. Solving the corresponding optimisation
Problem 2, with the optimisation directionality
function

V = diag3
i=1

(

2 × 105(s + 0.0354)

(s + 0.3536)(s + 105)

)

which is the uncertainty weight Wu shown in Fig-
ure 3, with additional roll-off beyond 105 rad/sec
to ensure that V ∈ H2, yields the results shown
in Figure 6. Observe that in both the structured
(3 scalar blocks) and unstructured cases, the µ-
curves with the optimised uncertainty weights are
closer to unity than their nominal counterparts.
Indeed, one could conclude that significantly more
uncertainty can be tolerated at low frequencies,
than reflected by the nominal uncertainty weight
Wu shown in Figure 3. Finally, it is evident that
the iterative algorithm proposed for the case of
structured uncertainty has NOT yielded a global
minimum, since the µ-curve is not unity across
frequency as one would expect. By contrast for the
unstructured uncertainty case, for which standard
convex programming techniques can be used, the
µ-curve with optimised weights is essentially unity
across frequency.
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