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Abstract: The purpose of this paper is to design a cascade observer to reconstruct
the angular speed of induction motor as well as an estimator of fluxes and load
torque. Due to the complexity of induction motor observation at low frequencies,
the observer and the estimator are tested and validated on reference trajectories
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motor state is unobservable. This benchmark is applied on an experimental set-up
located at IRCCyN (Nantes, France). Copyright© 2005 IFAC.
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1. INTRODUCTION

The most efficient control strategies of induction
motor, such as field oriented control and nonlinear
control, require velocity measurement. To limit the
cost, there is a growing interest in sensorless con-
trol (involving an estimation of speed and position).
Recently, many schemes for sensorless control of in-
duction motors have been proposed in the literature.
Generally, using the induction motor state equations,
the flux and speed can be calculated from the stator
voltage and current values (Kubota, 93). A model
reference adaptive system (MRAS) (Campbell, 02),
is also an alternative method to sensorless induction
motor control. In another proposed scheme (Kubota,
93), the flux is obtained by a full order Luenberger
observer. However, these methods perform well ex-
cept at very low speed, near zero stator frequency
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(Neves, 99). Indeed, observability problems at low
frequency have not often been taken into account in
motor control design. A possibility to circumvent the
difficulty is to inject high frequency signals in the sta-
tor voltage (Holtz, 00). Nevertheless, few works have
addressed the observability problem. In (Canudas, 00)
and (Ibarra, 04) conditions for lost of observability are
analyzed. For usual operating conditions, the hardest
situations for lost of observability is that the excita-
tion voltage frequency is zero and the motor is oper-
ating at constant speed. From this point of view, the
purpose of this paper is to propose a cascade observer
to estimate the induction motor angular speed and
an estimator for fluxes and load torque. The observer
and the estimator are tested on a benchmark (see
(web, 03)), in which the reference trajectories are de-
fined to drive the motor from high to low frequencies.
Robustness tests are defined in the setting of this
benchmark with defined inductance and resistance



variations. This paper is organized as follows. Section
2 introduces the model of induction motor. Section
3 presents our benchmark designed to test observers.
The design of a cascade observer and an estimator in
order to estimate the unmeasurable variables is given
in section 4. The experimental results obtained from
the proposed observer and estimator are presented in
section 5. Finally, some conclusions are drawn.

2. INDUCTION MOTOR MODEL

The equation of the induction motor can be simplified
by the Concordia transformation. The transformed
dynamic equation are given in a (a, 3) fixed reference
frame (Chiasson, 95) and the motor can be described
by (1)
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where isq, %58, Pra, Pra, Usa, Usg, 2, T} denote respec-
tively the stator currents, the rotor fluxes, the stator
voltage inputs, the angular speed and the load torque.
The subscripts s and r refer to the stator and rotor.
The parameters a, b, ¢, v, 0, m and m; are defined
by:

a = (Ry/Ly), b = (Mg./oLsLy), ¢ = (fu/J), v =

LR, +M2 R, .
), 0= (1= (Ma/LiLy)),

m = (pMs,/JL.), my = (1/oLs).

R, and R, are the resistances. Ly and L, are the self-
inductances, M, is the mutual inductance between
the stator and rotor windings. p is the number of pole-
pair. J is the inertia of the system (motor and load)
and f, is the viscous damping coefficient.

The control inputs are the stator voltages. The load
torque is viewed as a disturbance. Only stator cur-
rents and stator voltages are measured.

3. OBSERVER BENCHMARK

The observability problem of induction motor has
been underlined by many authors ((Canudas de
Wit, 00), (Ibarra, 04)). The authors of (Canudas
de Wit, 00) have characterized sufficient conditions
leading to observable and unobservable situations.
Sufficient conditions of unobservability are: the exci-
tation voltages frequency is zero and the rotor speed
is constant.

To define a benchmark to test observers on and near
the unobservability conditions, we have defined tra-
jectories (Fig. 1) for which the initial conditions of
speed and stator pulsation are such that the motor
is observable. Afterwards the pulsation of the stator

voltages is forced to zero corresponding to constant
fluxes (Fig. 2) while the rotor velocity remains con-
stant, making the state unobservable between 4 and
5 seconds and between 6 and 7 seconds. Between 5
and 6 seconds, the rotor moves with a constant accel-
eration, allowing to check the observer convergence
when the state is slightly observable. Finally, the
induction motor is driven outside the unobservability
conditions (Fig. 1). Practically, to apply this bench-
mark, the main difficulty lies in the simultaneous
control of speed and stator pulsation so that the slip
pulsation wy; = ws — pw does not exceed a limiting
value wy = R, Myiq/Lr¢q, which corresponds to the
highest admissible stator current. The reference slip
pulsation is given in Figure 3.c. In order to respect the
above condition, it is necessary to drive the speed of
the motor by a connected synchronous motor which is
controlled to follow the speed trajectory. Simultane-
ously, the frequency of the voltages applied to the in-
duction motor stator follows the stator pulsation ref-
erence shown in Figure 3. Moreover robustness tests
are defined by realistic variation of stator resistance
and stator inductance. This benchmark is applied on
the experimental set-up located at the "Institut de
Recherche en Communications et Cybernétique de
Nantes" (IRCCyN, see (web, 03)).

The frequency of the voltages applied to the sta-
tor of induction motor is controlled by classical U/f
control which is independent of motor measurements
and estimated state. At the same time, the speed of
the induction motor is controlled by the connected
synchronous motor using speed measurement. Our
cascade observer and the estimator use only the mea-
surement of stator voltages and stator currents.
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Fig. 1. Observer Benchmark trajectories : a) refer-
ence stator voltage pulsation (rd/s), b) reference
speed (rd/s), c) reference slip pulsation versus
time (s).
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Fig. 2. Components of rotor flux : a) ¢y, b) ¢35 (Wb)
versus time (s).

4. CASCADE OBSERVER
4.1 Design of the observer

In this section the design of a sensorless cascade
observer for induction motor is introduced. It is well



known that there is no systematic method to design
an observer for a given nonlinear control system. The
induction motor model may be seen as an intercon-
nection between several subsystems, where each of
these subsystems satisfies some required properties
for design an observer.

With this aim of view, the model of induction motor
(1) can be rewritten in the following form :

(5)-(%)(5)
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The above system (2) and (3) can be represented in
an interconnected compact form as:

X1 = A1(u,y, X2) X1 + 91(u,y, X2, X1)

y1 = C1.Xy (4)

Xo = Ao Xo + go(u, y, X2, X1)
y2 = CaXo (5)
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Our main purpose is to design an observer for sub-
system (4) which is based on the interconnected ap-
proach (see (Besangon, 98)) and an estimator for
subsystem (5).

In order to design cascade observer for (4), we make
the following assumption:

Assumption A1l. The variables u, y and X, are
considered as known signals of subsystem (4).

Define v := [u,y, Xo]7.

Suppose that the assumption above is satisfied, sub-
system (4) can be written in the following form (see
(Besangon, 98)):

Xl = Al(’U)X1 +gl(’U,X1)

y1 = C1Xy (6)
To design observer for subsystem (6), we introduce
the following assumptions

Assumption A2.

1. vis bounded and assumed to be regularly persistent
(Hammouri, 90) in order to guarantee the observabil-
ity property of subsystem (6).

2. X1 € Dy of R™ and X, € D,y of R™2, where n;
and ny are the dimensions of subsystems (4) and (5)
respectively.

3. Ai(u,y, X2) is globally Lipschitz with respect to
X2 and uniformly with respect to (u,y).

4. g1(u,y, Xo, X1) is globally Lipschitz with respect
to X; and uniformly with respect to (u,y, X3).

5. ga(u,y, Xo, X1) is globally Lipschitz with respect
to X5 and uniformly with respect to (u,y, X1).
From A2 an observer for the above form of system (6)
is given by (see (Schreier, 01)):

Zl = Al(v)Zl + gl(v, Zl) + M(U)Cl(Xl - Zl)
i =C1Zy (7)

where Z1 = COZ(le,Zlg) with Z11 = isaa zZ12 = Q

and the gains of the observer are given by :
M)Cy =T (v)A, ' KCy (8)

where I' = diag(1,¢(v)) Ag = diag(%, 9%) with ¢(v) = bp(&Tg,
6 >0and K = (K1, K2)7 is such that the matrix (4 — KC1)
01

00 )"

From A2.1, the observability property of (6) is satis-
fied and thus ¢,z is not equal to zero except for very
short time (The induction motor requires to be fluxed
for electromechanical energy conversion). Practically,
to avoid large gain of I'"! a discontinuity offset at
zero for ¢, is used in the simulation scheme.
Remark. The fluxes ¢, and ¢, 3 are not measurable,
then we estimate them by an estimator of subsystem
(5). The actual variables of fluxes are replaced by
their estimated.

The estimator for subsystem (5) is given by the fol-
lowing equations:

is stable where A =

Zoy = AsZo + g2(u, y, Z2, Z1)
Y2 = CoZy 9)

Moreover, the estimator of load torque 7; is given by
the following equation

R R . d
Ty = Jm(—¢rgz11 + dratsg) — Jezi2 — Jﬁzlz
0?K.
J=2 (z11 — 2z11).
bpd’v‘ﬁ

(10)

with %212 is given by numerical differentiation.

Assumption A3. The initial conditions are known
such that estimator (9) of (5) is well initialized.
The induction motor parameters are known with a
sufficient precision such that the errors between dA)m,
gﬁrﬂ, given by (9) and T, by (10) and respectively
their real values are supposed sufficiently bounded.
This assumption is totally realistic from a practical
point of view: at initial conditions, all states values
are null and the parameters uncertainties are known
and limited.



4.2 Analysis of observer stability

In this section we present the stability analysis of the
proposed observer. For that, we denote the estimation
€rrors as

e1=X1—2Zy1; ea=Xo— 2o
whose the errors dynamics are given by
1= [A1(u,y, Za) — M(u,y, Z2)Ci]ex
+ gl(u7 Y, X27 Xl) - 91(u7 Y, Z27 Zl)
+ [Al(U‘? Y, XQ) - Al (U, Y, ZQ)]Xl
€y = Agex + ga(u,y, X2, X1) — 92(u,y, Zo, Z1).
Taking the following change of coordinates
€1 = r(uay7Z2)A961a €2
it follows that

€1 = (H(A_l —

_ 1
= gaT €2

KCy))er + A1+ Ax + A

. 1

€o = Aser + onr {g2(u, y, X2, X1) — g2(u,y, Z2, Z1)}
where

Ay =T(u,y, Z2) Do (91 (u, y, X2, X1) — g1(u,y, Z2, Z1),
Ay =T(u,y, Z2)A 0([A1(U Y, X2) — A1(u,y, Z2)] X1),
A3 - (U, Y, Z?)F (u y7Z2)€1

Assumption A4. We assume that:
HF(U, Y, Z2)F_1(u7 Y, ZZ) H S P,

where f‘(u,y,Zg) = diag(0,bp(aMs isp — aq@r,g +
PQdra)) and T~! defined in (8). This assumption
is justified because of the bounds of the considered
variables (A2.2) and the persistent assumption A2.1.

Now, we establish the following result.

Lemma. If Assumptions A1, A2, A3 and A4 hold,
then the system (7)-(9) is an asymptotic observer for
system (6)-(5). Moreover, the convergence velocity of
the estimation error e = (e, e)? can be chosen to
be as fast as the one imposed by the estimator (9) of
subsystem (5).

Proof.

In order to prove the convergence of the observer,
consider the following Lyapunov function

V=Vi+VW
where V} = ¢ Psl and Vo = el'ey, and P = PT >0
is such that (A; — KC1)TP + P(4; — KC1) = —Q.

Q=QT >0.
Taking the time derivative of V' along of £; and e,
we obtain

VZHE?(A_l — KOl)TP61 + GslTP(fL — KCl) €1
+2e{ P(A1 4+ Ao+ A3) +e5 {As+ Al }en

2
+ —EzT {92(u,y, X2, X1) — g2(u,y, Z2, Z1)}

o™
= —951 Qe
—|—2€?P(A1+A2+A3 +€2 {A2+A }62

2
+ eTlsz {92(u,y, Xa, X1) — g2(u,y, Z2, Z1)} .

From assumption A2 and A4 we have

V§ —HelTQel
kz
w2l PG el + T2 eal e |
+ey {Ax+ AT} e + o H€2|| {l2 [[e2]l}

< —0ef Qey
+2ler]| P {kaly [lexl + k2ke [le2|l + pllenll}

2
+eg {A2 + A3} oo+ o flea {070 [lea} -
Regrouping the terms of ||e;| and ||e2||, we get

V< -0 |lallp
+2 e[| P{(k1ly + p) llex || + (k2kz) lle2]l}
+e5 {As + A7 }ea + 2|ea {Ia [le2l|}
then

— (O — 2(kaly + p) | PID) lle1 1>
+ (kakz | PI) el le2]

— (p2 = 202) [le2® (11)

where p, p11, 101,12, k1, ko, k; are positive constants cho-
sen to satisfy Lipschitz conditions and inequalities
(11) and po = min(2y,2a) > 0.

Now, by writing in terms of the Lyapunov function
‘/1 and V2

—(Ou1r — 2(k1ls + p) | PINVA

+ (koke | P/ Viv/Va — (2 — 212)Va
or in compact form
V < —mVi 4+ 1o/ Vi Va — w3V
where

= (O — 2001l + p) |P]) > 0
Ty = (k‘gk‘l ||P||)kp > O7
Ty = (/1,2 — 2l2) > 0.

Finally, with oo > 0
VS —aVy —m Vi + o/ Vi Vo — (7’1’3 — OZ)VQ

<-eVe=(m - g —ap

. AN CEONAY

where « is such that (73 —a) > 0.

Taking 0 = (m1 —
it follows that

siiay) > 0, and k= min(a, 6),
—k(V1 + Va)

This ends the proof.



4.8 Compensation of bad observer behavior at low
frequencies (under unobservable conditions)

In the next section, it is shown that obviously the
proposed observer diverges at low frequencies when
the induction motor is under unobservable conditions.
When stator frequency of the induction motor is near
zero, some components of cascade observer gains be-
come very large, then the part of feedback due to the
measure is important and insignificant (unobservable
conditions). To avoid this bad behavior, the idea is to
switch to a structure without information feedback
(without error estimation gains) i.e: to an estimator
when the induction motor is near and under unob-
servable conditions.

5. EXPERIMENTAL RESULTS

This section presents experimental results of proposed
cascade observer and estimator which are tested on
our observer benchmark. The parameters K, Ko,
f are chosen as follows: K; = 0.1, K = 0.01 and
6 = 300 in order to satisfy convergence conditions.
Experiments were carried out with the following in-
duction motor values: 1.5kW normal rate power;
1430rpm nominal angular speed; 220V nominal volt-
age; 7.5A nominal current; n, = 2 number of pole
pairs. The values of the nominal parameters of the
motor are:R, = 1.633(2 stator resistance; R, = 0.93(2
rotor resistance; Ly, = 0.142H stator self-inductance;
L, = 0.076H rotor self-inductance; M, = 0.099H
mutual inductance; J = 0.0111/rad/s? inertia (motor
and load); f, = 0.0018 Nm/rad/s viscous damping
coefficient. The experimental sampling time 7 is equal
to 200us. In conformity with Observer Benchmark
described in section 3, the experimental results have
been evaluated in the following steps: - Step 1: Nomi-
nal conditions; - Step 2: Nominal conditions with ob-
server /estimator switching; - Step 3: Stator resistance
variation +50%:; - Step 4: Stator inductance variation
+20%.

Experimental results for Step 1 are reported in Fig.
3, 4 and 5. The estimated and measured speed are
shown in Fig. 3. As foreseeable estimated speed tracks
good its measure under observable conditions, but the
estimated speed diverges when the motor is near and
under unobservable conditions. The conclusion is the
same for estimated torque (see Fig. 5). The norm of
flux cannot be measured on the set-up. However only
estimated flux is given in Fig. 4 which diverges like
estimated speed and torque near and under unobserv-
able conditions.

s

Fig. 3. Measured speed (a) and its estimation (b),
(rd/s) versus time (s).

Fig. 4. Flux estimation, (Wb) versus time (s).

Fig. 5. Measured torque (a) and its estimation (b),
(N.m) versus time (s).

Step 1: Nominal conditions.

In Step 2 with the switch of the observer in estimator
mode near and under unobservable conditions, results
are depicted in Fig. 6, 7 and 8. As may be observed,
the estimated speed shown in Fig. 6 is stable near and
under unobservable conditions where it appears only
a small static error. When the motor is under observ-
able conditions, the speed tracking is the same than in
the former case (see Fig. 3). Conclusion is identical for
the estimated flux and torque (see Fig. 7 and Fig. 8).

Fig. 6. Measured speed (a) and its estimation (b),
(rd/s) versus time (s).
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Fig. 7. Flux estimation, (Wb) versus time (s).

Fig. 8. Measured torque (a) and its estimation (b),
(N.m) versus time (s).

Step 2: Nominal conditions with observer/estimator
switching.



Now, the interest is to verify the robustness of the
observer with respect to motor parameters variations
(Step 3). The comparison is made with Step 2.
Results in Step 3 with resistance variation +50% are
shown in Fig. 9, 10 and 11. It is noted that the
estimated speed (Fig. 9) is analogous with the one
in Step 2 (Fig. 6) even near and under unobservable
conditions. Under observable conditions, it appears a
small static error for estimated torque (Fig. 11) but
estimated flux (Fig. 10) is nearly similar compared
with Step 2. The results are different near and under
unobservable conditions: it appears a small static
error for estimated flux (Fig. 10) but estimated torque
(Fig. 11) is nearly similar compared with Step 2.

Fig. 9. Measured speed (a) and its estimation (b),
(rd/s) versus time (s).
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Fig. 11. Measured torque (a) and its estimation (b),
(N.m) versus time (s).

Step 3: Resistance variation +50%.

The tests carried out in the step of stator inductance
variation (+20%) gave also good results compared
with Step 2.

6. CONCLUSION

In this paper, a cascade observer and an estimator to
reconstruct the angular speed of sensorless induction
motor and to estimate the fluxes and load torque even
at low frequency conditions were proposed.

Cascade observer and estimator are tested and val-
idated on an experimental set-up using a signifi-
cant benchmark which evaluates the performances of
the observer at low frequencies. Experimental results
show, as it was foreseeable, that the observer diverges

near and under unobservable conditions. In order to
escape this behavior, we have forced the observer to
switch in estimator mode (without error estimation
gains) for low frequencies conditions. The robustness
of the cascade observer and the estimator is verified
with respect to significant tests by stator resistance
variation (+50%) and inductance variation (4+20%).
For the two cases, the angular speed is well estimated
even at low frequencies (near and under unobservable
conditions).
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