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Abstract: In this paper the identification of SISO Wiener models in presence of bounded
output noise is considered. A three stage procedure based on the inner signal estimation,
outlined in a previous contribution, has been proposed. Results and algorithms for the
computation of inner-signal bounds through the design of a suitable input sequence have
been provided for the case of polynomial without invertibility assumptions. A simulated
example, showing the effectiveness of the proposed approach, has been presented.
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1. INTRODUCTION

In this paper we will focus on a particular class of
nonlinear systems, commonly referred to as Wiener
models (see Figure 1) which consists of a linear dy-
namic system followed by static nonlinear block N .
The identification of such a model is carried out on
the basis of the sequences ut and yt, while the inner
signal xt, i.e. the output of the linear block, is not
assumed to be available. Despite its simplicity, such
model has been successfully used in many engineering
fields, thanks to its ability to embed process structure
knowledge like, e.g., the presence of nonlinearity in
the measurement equipment. The identification of
Wiener models has attracted the attention of many au-
thors exploiting a number of different techniques (see,
e.g., Billings, 1980; Bai, 2003; Wigren, 1993; Crama
and Schoukens, 2001; Greblicki, 1992). The main dif-
ficulty in the identification of nonlinear block-oriented
systems is that the internal signal is not available for
measurement. Most of the contributions assume in-
vertibility of the nonlinearity; as a matter of fact under
such an assumption the inner signal can be recovered
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from the output measurements through inversion of
the previously estimated nonlinearity. However, many
output nonlinearities encountered in real world prob-
lems are non-invertible, thus the invertibility assump-
tion appears to be quite restrictive.
In all the papers mentioned above, the authors as-
sume that the measurement error ηt is statistically
described. This paper deals with the identification of
Wiener models with non-invertible nonlinearity when
the measurement errors are assumed to be unknown
but bounded (see, e.g., Milanese et al., 1996). The
key step in the proposed procedure is the inner sig-
nal estimation since the nonlinearity is assumed to be
non-invertible, which means that, given the measured
output yt, the inner signal xt cannot be evaluated
uniquely even in the case of exactly known polyno-
mial and noise free measurements. Some guidelines
on how to deal with this problem through the design
of a suitable identification experiment have been pro-
vided in (Cerone et al., 2003). In this paper algorithms
for the solution of such a problem are provided to-
gether with a simulated example showing the effec-
tiveness of the proposed approach.



2. SET MEMBERSHIP IDENTIFICATION OF
WIENER SYSTEMS

Consider the SISO discrete-time Wiener model shown
in Figure 1, where the linear dynamic block, which is
modeled by a stable discrete-time system with non-
zero steady-state gain, maps the input signal ut into
the unmeasurable inner variable xt according to

xt =
B(q−1)
A(q−1)

ut = G(q−1)ut, (1)

where A(·) and B(·) are polynomials in the backward
shift operator q−1, (q−1wt = wt−1),

A(q−1) = 1 + a1q
−1 + . . .+ anaq

−na, (2)

B(q−1) = b0 + b1q
−1 + . . .+ bnbq

−nb. (3)

and A(·) is assumed to be stable. The nonlinear block
transforms xt into the noise-free outputwt through the
following polynomial function N (xt, γ)

wt = N (xt, γ) =
n∑

k=1

γkx
k
t , t = 1, . . . , N ; (4)

whose order n is taken to be finite and a-priori known;
N is the length of the input sequence. Let yt be the
noise-corrupted measurements of wt

yt = wt + ηt. (5)

Measurements uncertainty is known to range within
given bounds ∆ηt, i.e.,

| ηt |≤ ∆ηt. (6)

Unknown parameter vectors γ ∈ Rn and θ ∈ Rp

are defined, respectively, as γT = [γ1 γ2 . . . γn],
θT = [a1 . . . ana b0 b1 . . . bnb]. Since the
parameterization of the structure of Figure 1 is not
unique we assume without loss of generality, that
the steady-state gain of the linear part be one, that

is g =
∑nb

j=0 bj

/
(1 +

∑na
i=1 ai) = 1. Preliminary

results on set-membership identification of Wiener
models described by equations (1) – (6) have been
provided in (Cerone et al., 2003). The three-stage
procedure for deriving bounds on parameters γ and θ
outlined in that paper can be summarized as follows.
First, exploitingM steady-state input-output data, one
gets the feasible parameter set Dγ of the nonlinear
block parameters, which is a convex polytope; then
the central estimate γj

c =
(
γmin

j + γmax
j

)
/ 2 and the

parameter uncertainty interval [γmin
j , γmax

j ] of each
parameter γj are computed solving the following two
linear programming problems:

γmin
j = min

γ∈Dγ

γj , γmax
j = max

γ∈Dγ

γj , (7)

γj
c =

γmin
j + γmax

j

2
. (8)

Further, given the estimated uncertain nonlinearity
N (xt, γ) and the output measurements collected ex-
citing the system with an input dynamic signal,
bounds on the inner signal xt are computed. Finally,

such bounds, together with the input dynamic se-
quence, are used for bounding the parameters of the
linear block solving a suitable output error problem.
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Fig. 1. Single-input single-output Wiener model.

3. EXPERIMENT DESIGN AND ESTIMATION
OF THE INNER SIGNAL

In the case of uncertain polynomial the following
family of polynomials can be defined

Πt = {pt(xt, wt, γ) : wt ∈ R, γ ∈ Dγ} (9)

where

pt(xt, wt, γ) = wt −
n∑

k=1

γkx
k
t . (10)

It is assumed that all polynomials in Πt have degree
equal to n, that is, γn �= 0 ∀γ ∈ Dγ . In order to
evaluate the inner signal xt one has to find the real
roots of the uncertain polynomial (9).
Now, let us introduce the following definitions of
Output Invertibility Interval and Feasible Inner-signal
Interval.

Definition 1. The set W ⊂ R is an Output In-
vertibility Interval for the uncertain polynomial
N (xt, γ) of order n, if for wt ∈ W each polynomial
pt(xt, wt, γ) ∈ Πt shows either only one real root
when n is odd or two real roots when n is even.

Definition 2. The set X ⊂ R is a Feasible Inner-
signal Interval for the Wiener system described by
equations (1), (2), (3) and (4) if the set of output values
O = {wt ∈ R : wt = N (xt, γ), for some γ ∈
Dγ , xt ∈ X} is an Output Invertibility Interval.

The key idea exploited in this paper is to design an in-
put sequence {ut} which will force the unmeasurable
inner sequence {xt} to belong to a prescribed Feasible
Inner-signal IntervalX . In such a way the correspond-
ing output sequence {wt} will belong to an Output
Invertibility Interval of the polynomial N (x, γ).
The following three propositions provide a character-
ization of the Output Invertibility Intervals and the
Feasible Inner-signal Intervals.

Proposition 1. The uncertain polynomial N (xt, γ)
with γ ∈ Dγ , exhibits the following two Output In-
vertibility Intervals when n is odd:

W =]w,+∞[ and W =] −∞, w[ (11)



where

w = max
xt∈Υt

max
γ∈Dγ

n∑
k=1

γkx
k
t (12)

w = min
xt∈Υt

min
γ∈Dγ

n∑
k=1

γkx
k
t (13)

Υt =

{
xt ∈ R :

d

dxt

n∑
k=1

γkx
k
t = 0, for some γ ∈ Dγ

}

(14)

Proof: see (Cerone and Regruto, 2004).

Proposition 2. The uncertain polynomial N (xt, γ)
with γ ∈ Dγ , exhibits the following Output Invert-
ibility Intervals when n is even:

W =]w,+∞] for γn > 0 (15)

and
W = [−∞, w[ for γn < 0 (16)

where

w = max
xt∈Υt

max
γ∈Dγ

n∑
k=1

γkx
k
t (17)

w = min
xt∈Υt

min
γ∈Dγ

n∑
k=1

γkx
k
t (18)

Υt =

{
xt ∈ R :

d

dxt

n∑
k=1

γkx
k
t = 0, for some γ ∈ Dγ

}

(19)

Proof: see (Cerone and Regruto, 2004).

Proposition 3. The Wiener system described by equa-
tions (1), (2), (3) and (4), with uncertain output
polynomial N (xt, γ), exhibits the following Feasible
Inner-signal Intervals:

X = ]x,+∞[ (20)

and
X = ]−∞, x[ (21)

where

x = max

{
xt ∈ R :

1 + sign(γn)
2

w+

1 − sign(γn)
2

w −
n∑

k=1

γkx
k
t = 0,

for some γ ∈ Dγ

}
(22)

x = min

{
xt ∈ R :

1 + (−1)nsign(γn)
2

w+

1 − (−1)nsign(γn)
2

w −
n∑

k=1

γkx
k
t = 0,

for some γ ∈ Dγ

}
(23)

Proof: see (Cerone and Regruto, 2004).

3.1 Input sequence design

In order to drive the inner signal {xt} into the desired
interval X , the input signal {ut} should contain a
DC component uDC (offset) and a dynamic exciting
signal {utd} whose amplitudes should be chosen in
such a way that xt = xDC + xtd belongs to X ∀t.
Since the steady-state gain of the linear subsystem
is constrained to be one, the amplitudes of the DC
components in ut = uDC + utd and xt are the same,
i.e., uDC = xDC . Guidelines for the design of the
dynamic exciting signal {utd} are provided by the
following two propositions straightforwardly derived
from the definition of �∞-norm/�∞-norm system gain
which equals the �1-norm of h.

Proposition 4. For a given uDC ≥ x, each sample of
the sequence {xt} belongs to X if:

‖{utd}‖∞ ≤ |uDC − x|
hup

(24)

where h is the impulse response of the linear block
and hup is an upper bound of its �1 norm; ‖ · ‖∞ is the
�∞ norm of a sequence.

Proposition 5. For given uDC ≤ x, each sample of
the sequence {xt} belongs to X if:

‖{utd}‖∞ ≤ |uDC − x|
hup

(25)

When no a priori information on the �1-norm of the
linear systems is available, the following result can be
exploited.

Proposition 6. All the samples of the output sequence
{wt} belong to the same Output Invertibility Interval
W (either W = W or W = W ) if the samples of the
corresponding measured output sequence {yt} satisfy
the following inequalities:

yt > y ∀t or yt < y ∀t, when n is odd (26)

or

sign(γn)(yt − sign(γn)∆ηt) >
1 + sign(γn)

2
y−

1 − sign(γn)
2

y, ∀t when n is even

(27)

where
y = w + ∆ηt, y = w − ∆ηt

Proof: see (Cerone and Regruto, 2004).

Proposition 6 provides sufficient conditions for {wt}
to belong either to W or to W . Thus, when no a
priori information on the �1-norm of the linear systems



is available, the condition xt ∈ X ∀t can be indi-
rectly satisfied varying the amplitude of the dynamic
sequence {utd} by trial and error until the measured
output sequence {yt} satisfies either condition (26),
when n is odd, or condition (27), when n is even.

3.2 Evaluation of bounds on the unmeasurable inner
signal

Given the estimated uncertain polynomial nonlinearity
and a sequence of measured outputs {yt}, obtained
exciting the Wiener system with a suitable input se-
quence {ut} as described in Section 3.1, in this sec-
tion it is shown how upper and lower bounds on the
samples of the unmeasurable inner signal xt can be
evaluated.
The following proposition provides the bounds for the
case γn > 0 and X = X . The analogous propositions
for the other cases are not reported due to lack of
space, since they are only slightly variations of this
result.

Proposition 7. Given the estimated polynomial non-
linearity N (xt, γ) with γ ∈ Dγ and γn > 0, an input
sequence {ut} which drives the inner unmeasurable
signal into a Feasible Inner-signal Interval X , and the
corresponding measured output sequence {yt}, each
sample xt of the inner sequence {xt} is bounded as
follows:

xmin
t ≤ xt ≤ xmax

t (28)

where:

xmax
t = max

{
xt ∈ X : yt + ∆ηt −

n∑
k=1

γkx
k
t = 0,

for some γ ∈ Dγ

}
(29)

xmin
t = max

{
x, x̂min

t

}

x̂min
t = min

{
xt ∈ R : yt − ∆ηt −

n∑
k=1

γkx
k
t = 0,

for some γ ∈ Dγ

}
(30)

Proof: see (Cerone and Regruto, 2004).

4. COMPUTATIONAL ALGORITHMS

In this section the computational aspects of quantities
and sets involved in the estimation of the inner signal
are analyzed.

Computation of Υt — First consider the set de-
fined by equation (14), i.e., the set of real valued xt

for which the uncertain polynomial shows stationary

points (relative maxima, relative minima or points of
inflexion). The first derivative of the uncertain polyno-
mial is still an uncertain polynomial, namely

pt
′(xt, γ)=− d

dxt

n∑
k=1

γkx
k
t =−

n∑
k=1

kγkx
k−1
t (31)

which, clearly, shows nonlinear relations in the un-
known xt and the uncertain γ. It is noticed that a
given xt ∈ R is a real root of the uncertain poly-
nomial (31) if and only if there exists at least one
γ ∈ Dγ such that xt is the solution of the equation∑n

k=1 kγkx
k−1
t = 0. In order to find the real roots

of (31), a one-dimensional gridding on the variable xt

is proposed. For each grid point xt one must check
if there exists a solution to a set of 2M linear in-
equalities (i.e., γ ∈ Dγ) and one linear equality (i.e.,∑n

k=1 kγkx
k−1
t = 0) in the unknown γ ∈ Rn. If a

solution γ exists, then xt is a real roots of the uncer-
tain polynomial (31). Such a check can be performed
solving a linear programming problem.
Computation of w and w — Next equations (12) and
(13) which define two nonlinear programming prob-
lems are considered. We note that when xt is given,
problems (12) and (13) simplify to linear programs.
Thus, to compute w and w, for each value of xt ∈ Υt,
the solution of two linear programming problems with
n variables and 2M constraints is required. A one-
dimensional gridding procedure is used in order to
carry out the optimization over a finite number of
xt ∈ Υt.
Computation of x and x — Here, equation (22) and
equation (23) are considered. In order to simplify the
discussion, only odd order polynomials with γn > 0
are only considered since similar considerations can
be made in all other cases (γn > 0, γn < 0, n odd, n
even). In the considered case one gets

x = max{xt ∈ R : pt(xt, w, γ) = 0,
for some γ ∈ Dγ} (32)

and

x = min{xt ∈ R : pt(xt, w, γ) = 0,
for some γ ∈ Dγ} (33)

As a matter of fact equations (32) and (33) show non-
linear relations in the unknown xt and the uncertain γ.
The following considerations can be made in order to
develop algorithms for the computation of x and x:

1. for a given xt ∈ R the following facts are true:

• if xt is the solution of problem (32), then the set
Γt(xt, w, γ) = {γ ∈ Dγ : pt(xt, w, γ) = 0} is
not empty;

• if xt is the solution of problem (33), then the set
Γt(xt, w, γ) = {γ ∈ Dγ : pt(xt, w, γ) = 0} is
not empty;

2. let us consider the two nominal polynomials
p nom

t (xt, w, γ
o) and p nom

t (xt, w, γ
o) obtained, e.g.,

setting γo = γc and let us define xo and xo re-
spectively as the maximum real root of the equation



p nom
t (xt, w, γ

o) = 0 and the minimum real root of
the equation p nom

t (xt, w, γ
o) = 0; it is noticed that

only the two intervals [xo,+∞) and (−∞, xo] have to
be explored in order to find a suitable approximation
of x and x respectively.

Stringing together those considerations the following
two algorithms are proposed for the approximate com-
putation of x and x respectively.

Algorithm 1. (Computation of x)
1. Set α = α0 and ε = prescribed tolerance.
2. Compute r = max{xt ∈ R : p nom

t (xt, w) =
0, γc}.
3. Set xm = r.
4. Set xM = xm + α.
5. If ∃γ� ∈ Dγ : pt(xM , w, γ�) = 0 then

xm = xM ;
else

If |xM − xm| < ε then
x∗ = xM ;
return x∗;
stop algorithm.

else
α = α/2;

end if
end if.

8. Repeat from 4.

Algorithm 2. (Computation of x)
1. Set α = α0 and ε = prescribed tolerance.
2. Compute r = min{xt ∈ R : p nom

t (xt, w) =
0, γc}.
3. Set xM = r.
4. Set xm = xM − α.
5. If ∃γ� ∈ Dγ : pt(xm, w, γ

�) = 0 then
xM = xm;

else
If |xM − xm| < ε then

x∗ = xm;
return x∗;
stop algorithm.

else
α = α/2;

end if
end if.

8. Repeat from 4.

The main properties of Algorithm 1 and Algorithm 2
are highlighted by the following proposition.

Proposition 8. Algorithm 1 and Algorithm 2 show the
following properties:
1. Algorithm 1 and Algorithm 2 are convergent.
2. Algorithm 1 provides an upper bound x∗ of x and
Algorithm 2 provides an lower bound x∗ of x; the
absolute errors of such bounds are both bounded by
ε.
3. The check required by step 5 of Algorithm 1
and Algorithm 2 can be performed solving a linear
programming problem.

Proof: see (Cerone and Regruto, 2004)

Computation of xmax
t and xmin

t — Finally, the com-
putation of the inner signal bounds is considered. In
this case one must compute

xmax
t = max{xt ∈ X : pt(xt, yt + ∆ηt, γ) = 0,

for some γ ∈ Dγ}
and

xmin
t = max{x, x̂min

t }
where

x̂min
t = min{xt ∈ R : pt(xt, yt − ∆ηt, γ) = 0,

for some γ ∈ Dγ}
Since xmax

t = max{xt ∈ X : pt(xt, yt +
∆ηt, γ) = 0, for some γ ∈ Dγ} = max{xt ∈
R : pt(xt, yt + ∆ηt, γ) = 0, for some γ ∈ Dγ},
xmax

t can be computed using Algorithm 1 simply
substituting pt(xM , w, γ) with pt(xM , yt + ∆ηt, γ).
Moreover, as a matter of fact, x̂min

t can be computed
using Algorithm 2 simply substituting pt(xM , w, γ)
with pt(xM , yt − ∆ηt, γ).

5. A SIMULATED EXAMPLE

In this section the parameter bounding procedure out-
lined in (Cerone et al., 2003) is applied to a numerical
example exploiting the results and the algorithms de-
veloped in the present paper. The system considered
here is characterized by (1), (2) and (5) with: γ1 = −5,
γ2 = −4, γ3 = 1, ψ1(ut) = ut; ψ2(ut) = u2

t ;
ψ3(ut) = u3

t ; A(q−1) = (1 − 1.1q−1 + 0.28q−2)
and B(q−1) = (0.1q−1 + 0.08q−2). The con-
sidered nonlinear function is an odd non-invertible
function. Bounded absolute output errors have been
considered when simulating the collection of both
steady state data, {ūs, ȳs}, and transient sequence
{ut, yt}. We assumed that the transient and steady-
state measurement noise sequences {ηt} and {η̄s}
are random sequences belonging to the uniform dis-
tributions U [−∆ηt,+∆ηt] and U [−∆η̄s,+∆η̄s] re-
spectively. Bounds on steady-state and transient out-
put measurement errors were supposed to have the
same value, i.e., ∆ηt = ∆η̄s � ∆η, and were
chosen in such a way as to simulate five different
values of signal to noise ratio at the output, namely
60 dB, 50 dB, 40 dB, 30 dB and 20 dB. For a given
∆η, the length of steady-state and the transient data
are M = 50 and N = [100, 1000] respectively.
From the simulated transient sequence {wt, ηt} and
steady-state data {w̄s, η̄s}, the signal to noise ratios
SNR and SNR are evaluated, respectively, through

SNR = 10 log
{∑N

t=1 w
2
t

/ ∑N
t=1 η

2
t

}
and SNR =

10 log
{∑M

s=1 w̄
2
s

/ ∑M
s=1 η̄

2
s

}
.

The steady-state input sequence {ūs} belongs to the
interval [−10, 10], uDC = 7.53 and the dynamic
sequence {utd} belongs to the uniform distribution



U [−2.45, 2.45]. Results about the nonlinear and the
linear block are reported in Table 1 and Tables 2 and 3
respectively. For low noise level (SNR = 60 dB) and
for all N , the central estimates of both the nonlinear
static block and the linear model are consistent with
the true parameters. For higher noise level (SNR ≤
40 dB), both γc and θc give satisfactory estimates of
the true parameters. As the number of observations
increases (from N = 100 to N = 1000), parameter
uncertainty bounds ∆γj = |γmax

j − γmin
j |/ 2 and

∆θj |θmax
j − θmin

j |/ 2 decreases, as expected.

6. CONCLUSIONS

In this paper the identification of SISO Wiener models
has been considered when the output measurements
are corrupted by unknown but bounded noise. A three
stage procedure based on the inner signal estimation,
outlined in a previous contribution, has been proposed.
Results and algorithms for the computation of inner-
signal bounds through the design of a suitable input
sequence have been provided for the case of non-
invertible nonlinearity. A simulated example, showing
the effectiveness of the proposed approach, has been
presented.

Table 1: Nonlinear block parameter central estimates
(γc

j ) and parameter uncertainty bounds (∆γj)

SNR γj True γc
j ∆γj

(dB) Value

58.2 γ1 -5.000 -4.999 2.1e-3
γ2 -4.000 -4.000 1.8e-4
γ3 1.000 1.000 4.8e-5

38.2 γ1 -5.000 -5.027 3.6e-2
γ2 -4.000 -3.995 8.1e-3
γ3 1.000 1.001 1.6e-3

28.6 γ1 -5.000 -5.040 8.2e-2
γ2 -4.000 -4.003 6.2e-3
γ3 1.000 1.000 1.9e-3

18.4 γ1 -5.000 -5.101 1.1e-1
γ2 -4.000 -4.000 1.0e-2
γ3 1.000 1.004 5.1e-3
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Table 2: Linear system parameter central estimates
(θc

j ) and parameter uncertainty bounds
(∆θj) when N = 100.

SNR θj True θc
j ∆θj

(dB) Value
58.2 θ1 -1.100 -1.100 5.3e-3

θ2 0.280 0.280 5.1e-3
θ3 0.100 0.100 6.1e-4
θ4 0.080 0.080 5.6e-4

38.0 θ1 -1.100 -1.106 7.9e-2
θ2 0.280 0.288 7.4e-2
θ3 0.100 0.100 8.0e-3
θ4 0.080 0.081 9.0e-3

28.3 θ1 -1.100 -1.155 2.1e-1
θ2 0.280 0.331 2.0e-1
θ3 0.100 0.105 2.0e-2
θ4 0.080 0.074 2.9e-2

18.2 θ1 -1.100 -1.211 3.9e-1
θ2 0.280 0.403 3.6e-1
θ3 0.100 0.099 4.2e-2
θ4 0.080 0.101 4.7e-2

Table 3: Linear system parameter central estimates
(θc

j ) and parameter uncertainty bounds
(∆θj) when N = 1000.

SNR θj True θc
j ∆θj

(dB) Value
58.2 θ1 -1.100 -1.100 1.9e-3

θ2 0.280 0.280 1.8e-3
θ3 0.100 0.100 1.9e-4
θ4 0.080 0.080 2.2e-4

38.4 θ1 -1.100 -1.102 5.8e-2
θ2 0.280 0.282 5.4e-2
θ3 0.100 0.100 6.1e-3
θ4 0.080 0.079 5.9e-3

28.2 θ1 -1.100 -1.106 8.9e-2
θ2 0.280 0.284 8.2e-2
θ3 0.100 0.099 8.7e-3
θ4 0.080 0.080 1.0e-2

18.2 θ1 -1.100 -1.113 1.5e-1
θ2 0.280 0.293 1.4e-1
θ3 0.100 0.101 1.6e-2
θ4 0.080 0.078 1.7e-2


