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Abstract: In real-time multitasking systems, feasible periodic tasks execute within their
periods. However, the exact time at which each task executes vary due to other task
interferences. For control tasks, this produces irregular sampling and varying time delays,
which may degrade system performance and bring the system to instability. In this paper
we present stability conditions that allow us to evaluate if a closed-loop system designed
to work at a nominal sampling period hd with a nominal time delay τd will remain stable
if the run-time sampling is not strictly periodic and time delays vary randomly. In the
closed-loop system model, we consider the irregular sampling and the varying time delays
as random variables with known expectation. With this model, the system evolution can
be seen as a sequence of random state vectors generated by the system closed-loop matrix.
Then, we derive stability conditions for the system in terms of convergence of a sequence
of random variables. Copyright c©2005 IFAC.

Keywords: Real-time systems, Timing jitter, Random variables, Probabilistic models,
Stability tests

1. INTRODUCTION

In real-time multitasking systems, feasible periodic
tasks execute within their periods. However, the exact
time at which each job executes vary due to other task
interferences. That is, real-time systems allow jitter in
task executions as far as feasibility constraints are met.

In such systems, controllers are often implemented
as periodic tasks, where at each job execution, sam-
pling, control algorithm computation and actuation are
sequentially performed. In this context, variability in
jobs execution produces sampling and latency jitter
(Arzen et al., 2000), which may degrade control sys-
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tem performance and even bring the system to insta-
bility (Martı́ et al., 2001b).

Recently, several works combining control and schedul-
ing co-design approaches have focused on the jit-
ter problem (e.g., (Cervin, 1999) and (Martı́ et al.,
2001a)). Their main goal has been to minimize the de-
grading effects that jitter in control tasks introduces in
the performance of control systems. This is achieved
by computing and switching controllers according to
the run-time jitters. In addition, several tools have
been presented for simulation and performance analy-
sis of real-time control systems (e.g. (Henriksson et
al., 2002) and (Lincoln and Cervin, 2002)). However,
none of the previous works focused on control systems
stability (although stability issues were considered).



Looking at stability and the jitter problem for control
tasks, in (Martı́ et al., 2001c), a sufficient stability con-
dition was presented for analysing closed-loop sys-
tems where control tasks subject to jitter adapt their
gains at run time (i.e., switching controllers). Neces-
sary and sufficient stability conditions that can be also
applied in these scenarios can be found in (Dogruel
and Özgüner, 1995) or (Liberzon et al., 1999). How-
ever, the application of these conditions requires pre-
vious knowledge of the exact jitter values that each
control task will be subject to at run time. And for
some application scenarios, this may not be known
previously or could be impossible to predict due to
the dynamics of the real-time multitasking system. In
these cases, the application of these stability criteria
fails and new criteria are required.

The application of the stability criteria we present
does not require knowing the exact jitter values, but
their distribution. Our approach is based on mod-
elling the irregular sampling and varying time delay as
random variables with known expectation. With this
model, the evolution of the system can be seen as
a sequence of random state vectors generated by the
system closed-loop matrix. Then, we derive stability
conditions in terms of convergence of a sequence of
random variables. Results are illustrated using simu-
lated examples.

In addition, the stability criteria we present do not
assume switching controllers at run-time. We let the
system run a single discrete-time controller designed
assuming a constant sampling period hd and a constant
(or zero) time delay τd . The stability tests we present
can be used to analyse whether the closed-loop system
will remain stable if the run-time sampling is not
strictly periodic and time delays are not constant.

The rest of this paper is organized as follows. In Sec-
tion 2 we review the jitter problem. In Section 3 we
define the stability problem in terms of convergence
of the sequence of random state vectors. Section 4
presents two criteria to test closed-loop system stabil-
ity. Finally, we conclude and discuss future work in
Section 5.

2. THE JITTER PROBLEM

In this section we briefly review the jitter problem that
may arise in real-time multitasking systems, which
may result in random sampling and varying time de-
lays for control systems.

In real-time scheduling, controllers are usually im-
plemented using the periodic task model. A periodic
task is seen as a successive execution of jobs. The
kth job of a feasible periodic task fulfils the following
constraints: it has to execute within its period, which
starts at (k − 1)T and finishes at kT (where T is the
task period), and has to complete before or at time (k−
1)T + D, where D is its relative deadline (provided
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Fig. 1. Jitters on tasks jobs executions

C ≤ D ≤ T , where C is the task worst-case execution
time). This means that each job will start and finish
its execution within an interval of D time units (usu-
ally D = T ), but no assurances can be made on the
exact start and completion time of each job execution
because of the interference of other tasks executions.

A common way of coding classically designed con-
trollers using the periodic task model is to set each
control task period T equal to the sampling period hd

used in the controller design stage (with D = T ). Sam-
pling and actuation are assumed to take place when
each job starts and completes its execution respec-
tively. With this assumption, the allowed variability in
jobs executions results in random sampling and vary-
ing time delays. This is problematic because control
actions are calculated with respect to the assumptions
on regular sampling and constant time delay that were
made in the controller design stage.

Example 1 illustrates the jitter phenomena of real-time
multitasking systems and its influence on the control
signal for a generic controller.

Example 1. Let us consider a real-time multitasking
system with three control tasks, as specified in Table 1
(where periods P, deadlines D and worst-case compu-
tation times C are given in seconds).

Table 1. Task set.

P D C
task 1 0.5 0.5 0.2
task 2 1.9 1.9 0.3
task 3 2.9 2.9 0.4

Figure 1 (a) shows a partial feasible schedule of the
three tasks (during 7s, approximately) if the task set
is scheduled using the optimal priority-based schedul-
ing algorithm earliest deadline first (EDF) (Liu and
Layland, 1973). For each task, dark grey symbolizes
jobs executions, which may be blocked (symbolized
in light grey) due to the interference of other tasks
executions. These interferences, which are allowed as
far as schedulability constraints are satisfied, cause
jitter in jobs execution.
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Looking for example at the sequence of jobs of task 2
(Figure 1 (b)), we have that the time interval between
consecutive jobs start execution times, i.e., sampling
period, takes different values (for example h1 = 1.7s
and h2 = 1.9s). And the time elapsed from each job
start execution time to its completion time, i.e., latency
or delay, also varies (for example τ1 = 0.3s and τ2 =
0.5s). In fact, the task was assigned a period of hd =
1.9s (because this value was used in the controller
design stage), but at run-time, the real sampling period
varies in the vicinity of 1.9s, taking values at 1.7s, 1.9s
and 2s. In addition, in the controller design a delay
of 0.3s was accounted for, but at run-time, the real
latency varies, taking values of 0.3s but also of 0.5s.

Figure 2 shows the evolution of the control signal for
each job execution. In fact, it shows the evolution of
the expected control signal (thin line, corresponding to
a classically designed controller executing in isolation,
that is, without jitters) and the real control signal
(thick line) for the same controller if implemented in
task 2 in the multitasking real-time system .

In Figure 2, let us suppose for example that a per-
turbation affects the system controlled by task 2 just
before time 0. The first sampling that would detect that
the controlled system is not in equilibrium (due to the
perturbation) should occur at time 0. But due to a start
time delay, sampling occurs 0.2s later. Therefore, the
sampling will read a greater value (corresponding to a
greater deviation of the controlled system with respect
to its equilibrium point) than it should. Consequently
the real control signal will be stronger (higher valued)
than the expected one, because it will try to correct
a greater deviation. Therefore, the evolution of the
controlled system will not be the expected one. We
don’t know if the system will remain stable as it would
do if the controller would execute in isolation, without
suffering jitters.

By treating these jitters as random variables, this paper
presents a new (to the authors knowledge) probabilis-
tic approach to the stability analysis of control systems
subject to sampling and latency jitter.

3. PROBLEM FORMULATION

In this section we present the system model we use to
derive the stability criteria. We then define the problem

to be analysed for the stability analysis, and without
losing generality, we reduce the system model that we
consider in order to simplify notation.

3.1 System model

A linear discrete-time control system with time delay
(where the delay is less than or equal to the sampling
period) can be described by equation (1), where xn

is the state vector, uk and uk−1 are the current and
past control signals, and Φ(h), Γ0(h,τ) and Γ1(h,τ)
are the system and input matrices that depend on
the sampling period h and time delay τ (Astrom and
Wittenmark, 1997).

xn+1 = Φ(h)xn +Γ0(h,τ)un +Γ1(h,τ)un−1 (1)

Consider that the sampling period h and time delay τ
are independent random variables with known expec-
tation but the control signal u is given by a controller
designed to work at a constant sampling period hd

with a constant time delay τd . The new closed-loop
system dynamics can be described by (2),

[

xn+1

un

]

= A(h,τ ,hd ,τd)

[

xn

un−1

]

(2)

where A(h,τ ,hd ,τd) is the closed-loop matrix next
specified in (3). In (3), L = (L(hd ,τd),Lu(hd ,τd)) is
the feedback gain.

[

Φ(h)+Γ0(h,τ)L(hd ,τd) Γ1(h,τ)+Γ0(h,τ)Lu(hd ,τd )
IL(hd ,τd ) ILu(hd ,τd)

]

(3)

To clarify the notation, the closed-loop matrix (3) can
be further detailed as in (4).







a1,1(h,τ ,hd ,τd) . . . a1,n(h,τ ,hd ,τd)
...

. . .
...

an,1(h,τ ,hd ,τd) . . . an,n(h,τ ,hd ,τd)






(4)

3.2 Problem definition

The closed-loop system given by (2) may become
instable because control signals are not appropriate
according to the system dynamics. Control signals u
are computed according to the feedback gain L, that
was designed assuming a constant sampling period hd

and a constant time delay τd . However, the run-time
system evolution is discretely driven by random vari-
ables h and τ , which take unexpected but bounded 1

values at each iteration.

1 Although the modeling of the jitters is out of the scope of this
paper, it is worth to mention that for a given feasible real-time
periodic task, the jitter variation is bounded (for further details, see
(Mart ı́ et al., 2001a)).



To focus on the stability of the closed-loop system
given by (2), we analyse the convergence of the se-
quence of state vectors that it generates. To do so
we use known concepts of convergence of sequences
of random variables (Grimmett and Stirzaker, 2001).
Note that looking at (2) we have to study which condi-
tions the generated sequence of random state vectors
x1, ...,xn has to fulfil in order to converge towards a
random vector x = 0.

Henceforth, convergence will refer to convergence
in mean (recall that convergence in mean implies
convergence in probability (Grimmett and Stirzaker,
2001)). We say that the sequence Xn converges in
mean towards X , if E(|Xn|) < ∞ for all n, and:

lim
n→∞

E(|Xn −X |) = 0

where the operator E denotes the expectation.

Therefore, to establish stability conditions for the
closed-loop system given by (2), we will focus on
studying the convergence in mean of the sequence of
state vectors xn towards x. That is,

lim
n→∞

E(|xn − x|) = 0

In fact, if the equilibrium point is zero (without losing
generality), then, we study

lim
n→∞

E(|xn|) = 0

In order to establish convergence criteria, we shall
look at the sequence given by E(|xn|). If such se-
quence converges towards zero, then, the sequence of
state vectors will converge in mean. Therefore, the
closed loop system specified in (2) will be stable.

We focus on sequences that are given by the expecta-
tion of the norm of each state vector. It is then impor-
tant to point out that the stability criteria we present
are given in terms of vector and corresponding (in-
duced) matrix norms satisfying the sub-multiplicative
property ‖A1A2‖ ≤ ‖A1‖‖A2‖ (such as p-norms do)
(Lancaster and Tismenetsky, 1985). Henceforth, the
operator ‖ · ‖ denotes the appropriate norm, and in the
examples we will use as vector norm the Euclidean
norm, with the spectral norm as associated matrix
norm.

3.3 System Simplification

From now on, for the sake of clarity, we will present
our results for a simplified version of (2). Also we will
assume that the system we study depends on a single
random variable, e.g., the sampling period. Therefore,
the system that we study is given by

xn+1 = Φ(h)xn +Γ(h)u(hd)

= (Φ(h)+Γ(h)L(hd))xn

= A(h,hd)xn (5)

where L = (l1(hd), . . . , lk(hd)) is the feedback gain
designed assuming a nominal sampling period hd,
and h is the random variable that describes the run-
time sampling. Therefore, the system evolution can be
described as







x1
n+1
...

xk
n+1






=







a1,1(h,hd) . . . a1,n(h,hd)
...

. . .
...

an,1(h,hd) . . . an,n(h,hd)













x1
n
...

xk
n






(6)

This will allow us to better explain and illustrate
our results. Note that with this simplification, we are
not losing generality in the sense that the results we
present also apply to the closed-loop system specified
in (2) (characterized also by the random variable time
delay). This holds because we consider the two ran-
dom variables to be independent.

In example 2 we introduce the system that we use
throughout the paper to illustrate the results we pre-
sented.

Example 2. Let us consider the double integrator,
process that can be modeled using the following
continuous-time state space representation (Astrom
and Wittenmark, 1997):

dx
dt

=

[

0 1
0 0

]

x+

[

0
1

]

u (7)

Sampling (7) with sampling period h (which we con-
sider a random variable) gives:

xn+1 =

[

1 h
0 1

]

xn +





h2

2
h



un (8)

Let us consider that the input un is given by un =
L(hd)xn, where the feedback gain L is designed with
a nominal sampling period hd and obtained by pole
placement, where p1 and p2 are the closed-loop poles.

L(hd) =
[

1−p1−p2+p1p2

hd
2

3−p1−p2−p1p2
2hd

]

(9)

For this particular example with poles (p1, p2) =
(0,0.5), the close-loop system in (6) is:

[

x1
n+1

x2
n+1

]

=









1−
0.25h2

h2
d

h−
0.625h2

hd

−
0.5h

h2
d

1−
1.25h

hd









[

x1
n

x2
n

]

(10)

Recall that in (10), h is a random variable, whose
probability distribution is characterized by a known
expectation.

4. STABILITY CRITERIA

Two stability criteria to assess the stability of closed-
loop systems modelled as in (5) are presented next.



4.1 First stability criterion

We study the sequence given by E(|xn|). We look for
conditions on this sequence that ensure its tendency
towards zero. If it does, then, limn→∞ E(|xn|) = 0 will
hold, implying convergence in mean of the sequence
of state vectors xn, which implies stability of sys-
tem (5).

Proposition 1. Let A(h,hd) be the closed-loop system
matrix as defined in (5). If E(‖A(h,hd)‖)≤ 1, then the
system xn+1 = A(h,hd)xn is stable.

Observe the following inequality:

E(‖xn+1‖) = E(‖A(h,hd)xn‖)

≤ E(‖A(h,hd)‖‖xn‖) (11)

= E(‖A(h,hd)‖)E(‖xn‖)

Therefore, if E(‖A(h,hd)‖)≤ 1 then limn→∞ E(‖Xn‖) =
0, implying system stability. Because proposition
1 is a sufficient (but not necessary) condition, we
can not affirm anything about system stability if
E(‖A(h,hd)‖) > 1. This is illustrated in the following
example.

Example 3. Consider system (10) in example 2. Con-
sider that the random sampling period h is a discrete
variable that takes alternatively values 1.7s, 1.9s and
2s (as if the controller was implemented in task2 of
example 1). For this example, the probability distribu-
tion of the sampling period for task 2 can be described
as follows: the probability of h = 1.7s is f (1.7s) =
0.2, of h = 1.9s is f (1.9s) = 0.4 and of h = 2.0s
is f (2.0s) = 0.4. Therefore, E(h) = 1.7 ∗ 0.2 + 1.9 ∗
0.4 + 2 ∗ 0.4 = 1.9. Recall that we will use here the
Euclidean norm for vectors and the spectral norm for
matrices. For this configuration, if the state feedback
controller is designed with nominal sampling period
hd = 1.9, then E(‖A(h,hd)‖) = 1.09 (aprox.), which
does not satisfy proposition 1. In fact, for any nomi-
nal sampling period hd ∈ [1.7s . . .3s], never holds that
E(‖A(h,hd)‖) < 1. This is shown in Fig. 3 (a), where
we plot E(‖A(h,hd)‖) (vertical axis) as a function of
hd (horizontal axis).

Therefore, for this example, by using this criterion, we
can not ensure convergence for any of the tested hd

values, nor system stability. However, using the stabil-
ity results presented in (Dogruel and Özgüner, 1995),
the system we are studying happens to be stable. Note
that this system can be viewed as a switching control
system that randomly switches between three matrices
A(1.7,1.9), A(1.9,1.9) and A(2,1.9), where

A(1.7,1.9) =

[

0.7998614959 0.7493421055
−0.2354570637 −0.118421052

]

,

A(1.9,1.9) =

[

0.7500000000 0.712500000
−0.2631578947 −0.250000000

]

,
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Fig. 3. Application of the stability criteria: (left)
E(‖A(h,hd)‖) (in vertical axis) vs. hd (horizontal
axis), (right) E(‖A(h2,hd)A(h1,hd)‖) (in vertical
axis) vs. hd (horizontal axis)

A(2.0,1.9) =

[

0.7229916898 0.684210527
−0.2770083102 −0.315789473

]

For them we can find the following matrix P > 0

P =

[

46.58723044600783 19.81892544766115
19.81892544766115 55.51306950193158

]

that satisfies that ∀A ∈ Ω = {A(1.7,1.9), A(1.9,1.9),
A(2,1.9)}, AT PA − P < 0, which implies that the
system is stable according to (Dogruel and Özgüner,
1995).

This example shows that the stability condition given
in proposition 1 can be rather conservative. This
is because the inequality in (11) E(‖A(h,hd)xn‖) ≤
E(‖A(h,hd)‖‖xn‖) may be too inaccurate, in the sense
of being a loose upper bound. Note also that in the
example, the same results are obtained regardless of
which p-norm is used.

4.2 Second stability criterion

To improve the accuracy of the previous criterion, in
this section we present a less conservative stability
condition, which is based on the following observa-
tion. If in the system used in example 3 we consider a
step further in the inequality (11), that is,

E(‖xn+2‖) = E(‖A(h2,hd)xn+1‖)

= E(‖A(h2,hd)A(h1,hd)xn‖) (12)

≤ E(‖A(h2,hd)A(h1,hd)‖‖xn‖)

= E(‖A(h2,hd)A(h1,hd)‖)E(‖xn‖),

and plot E(‖A(h2,hd)A(h1,hd)‖) (vertical axis) as a
function of hd (horizontal axis), we can see in Fig. 3
(b) that for a set of hd values less than 2.35s (aprox.),
the expectation is less than 1. Therefore, for any
controller designed with one of these hd values with
E(‖A(h2,hd)A(h1,hd)‖) < 1, the closed-loop system
would have remained stable even if the controller
would have been affected by the sampling jitter we
modeled in the random variable h. Note that for these
hd values, the sequence of state vectors xn will con-
verge in mean towards zero, that is, system (5) will



be stable. In (12), h1 and h2 denote two consecutive
samples, which we consider to be two independent
random variables.

Therefore, with that further step in inequality (11) and
adequately applying proposition 1, we have been able
to affirm stability for a range of hd values. This obser-
vation leads to the following necessary and sufficient
stability condition.

Proposition 2. (General Criterion) Let A(h,hd) be the
closed-loop system matrix as defined in (5). Given hd,
the control system is stable iff exists k ∈ N such as

E(‖A(hk,hd) · · ·A(h2,hd)A(h1,hd)‖) ≤ 1

Proposition 2 is a direct consequence of the previ-
ous observation, which takes advantage of the sub-
multiplicative property of the matrix norm operator. In
fact, inequality (12) can be generalized to inequality
specified in (13).

E(‖xn+k‖) ≤ E(‖A(hk,hd ) · · ·A(h2,hd)A(h1,hd)‖)E(‖xn‖) (13)

If E(‖A(hk,hd) · · ·A(h2,hd)A(h1,hd)‖) ≤ 1, then the
sequence of state vectors converges in mean towards
the equilibrium point (E(‖xn‖) → 0), that is, the
closed-loop system in (5) is stable).

It is worth to mention that proposition 2 with k = 1 is
equivalent to proposition 1. The application of propo-
sition 2 requires to recursively compute the expecta-
tion of the norm of a matrix obtained after multiplying
k matrices, for k = 1,2, . . .. And if the system is stable,
at some point, the inequality of the proposition will
hold.

Proposition 2 can be used in two directions. Given a
sampling period distribution, it can be used to find a
value or set of values for hd such that the system is
stable (as we described above). Or, it also can be used
to find, given a value for hd, the maximum sampling
variability that the closed-loop system admits before
going to instability. The later can be used for designing
resource management/scheduling techniques capable
of dealing with overload conditions in real-time con-
trol systems.

5. CONCLUSIONS

We have discussed why in the application scenario
of real-time control systems (where controllers are
subject to scheduling induced jitters), existing stabil-
ity criteria may not be applicable. To overcome this
applicability problem, in the closed-loop system de-
signed to work with regular sampling and assuming a
constant time delay, we have modeled the jitter effects
on the sampling and controller latency as bounded
random variables. Then, we have derived stability con-
ditions in terms of convergence of the random state
vectors generated by this new model. Using this stabil-
ity test has the advantage of obtaining a closer result

to real situations.We have illustrated the application of
these conditions using simple examples.

Future work will focus on using the stability con-
ditions for the design of more flexible and adaptive
schedulers.
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