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Abstract: A precipitation-temperature-flow model is developed to compute flow
from raw precipitation records, taking into consideration snow-melt contribution to
the flow. The model does not require other measurements than flow, temperature
and raw precipitation, thus resulting particularly useful in all those situations,
the majority, where these are the only observed data. A Data-Based Mechanistic
(DBM) modelling approach is used in order to keep at a minimum all the a-priori
assumptions on the physical mechanism driving the flow formation process. The
model has been applied on a classical set of data (the Jakulsa river basin, Iceland)
which is well known in the non-linear modellers community. Copyright c©2005 IFAC
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1. INTRODUCTION

Snow modelling methodological approaches are
usually divided in two major categories [Schreider
et al., 1997]: conceptual (or mechanistic), whose
main concern is the physical explanation of the
snow melt process, and empirical, which infers
directly from the data a relationship between the
hydro-meteorological characteristics of the catch-
ment. The former approach usually attempt to
describe the melting process by modelling the
energy balance within the snow pack. However,
although conceptual models properly account for
the processes determining melt, their use is of-
ten made very difficult by the huge number of
parameters they include and by the large and
detailed data they require (e.g., air temperature,
precipitation, snow temperature and density, veg-
etation cover, cloudiness, etc.). For these reasons
conceptual models can not be used in the areas
(the majority) where such detailed information

are not available over a relatively long period.
Moreover in many cases such information is highly
variable in space thus adding further uncertainties
to the model output. It is in fact to note that the
spatial heterogeneity in the hydrological process
is implicitly included in empirical models, while it
is to be explicitly modelled in conceptual models.

The empirical approach usually exploits the fre-
quently observed high correlation between snow-
melt and air temperature. It relies on the daily
average air temperature to represent the major
source for melt and for this reason it is often
known as degree−day (or temperature index ) ap-
proach. This approach has been used for many
years in many case studies (see Hock [2003] for
a review), providing in most of the cases accu-
rate results, comparable to those of more complex
models [WMO, 1986]. The physical basis of this
assumption (Braithwaite and Olesen, [1990]) is
the high correlation of the temperature with sev-



eral energy balance components (i.e., longwave at-
mospheric radiation, sensible heat flux and global
radiation). More specifically the degree−day as-
sumes the snow melt as linearly proportional to
the difference between the air temperature and a
threshold temperature below which there is not
melting. The most widely used formulation is the
following (Martinec et al. [1983]):

mt = δ(Tt − T s) (1)

where mt is the snow melt in the interval [t−1, t],
Tt is the daily average temperature calculated
on the same interval, T s is the above mentioned
threshold (often 0C◦), while δ is the degree-day
factor, representing the amount of snow daily
melted per temperature degree. The so calculated
snow-melt is used to compute an equivalent daily
rainfall which could then be considered as the in-
put of a classical rainfall-runoff model. Generally
the accuracy of the model highly depends on the
value given to the two parameters included in (1),
however the approach properly works only when
there is perennial snow (glaciers) and the snow
melt is always supported by the snow-pack. In fact
note that, as the (1) does not explicitly depend on
the snow-pack value, the model can not actually
know whenever the snow pack is completely melt
or not. It is thus necessary to introduce two far-
ther parameters that are the starting and ending
dates for the snow-melt process or alternatively
account for the snow-pack dynamics, by coupling
the rainfall-runoff model with a conceptual model
of the snow accumulation (Schreider et al. [1997];
Whetton et al. [1996]), which obviously requires at
leat one new state variable (e.g., the snow depth)
to be introduced. Therefore, even though referred
to as ”empirical”, this second approach can not
be considered as a purely empirical (inductive)
modelling process as it is significantly conditioned
by a-priori knowledge.

This paper aims at exploring the applicability
of a Data Based Mechanistic (DBM) approach
[Young, 1998] for deriving a rainfall-temperature-
flow model in a simplified way, by keeping at a
minimum both the a-priori assumptions on the
physical nature of the process and the number of
observational data required to identify the model
parameters. The idea underlying the approach
is that the snow-melt volumes for every sample
interval might be inferred from the very flow.
In this way the information on the snow-pack
volume, which has to be described as a state
variable in conceptual and empirical models, is
automatically updated through the observation of
the flow it generates. To implement such idea the
following DMB procedure has been followed:

(1) the input and output variables are chosen,
depending on the objectives of the modelling
exercise and data availability, the most par-

simonious model structure is statistically in-
ferred from the time series;

(2) if the linear model does not seem to be ade-
quate to the system description, state depen-
dent non-linearities are investigated through
a State Dependent Parameter (SDP) proce-
dure [Young, 2002];

(3) a physical meaningful interpretation of the
non-linearities is proposed; this is a very
important aspect of DBM modelling and
differentiates it from more classical ’black-
box’ modelling methodologies;

(4) the effective inputs are used in a linear trans-
fer function model that is first calibrated
through a simulation-optimization approach
(based on the Refined Information Variable
method [Young, 1984]). Once the nonpara-
metric state dependent relationships have
been parameterized, model parameters are
estimated all together with a recursive opti-
mization procedure (such as non linear least
squares algorithm);

(5) the model error is described as an AR
process; the inherently stochastic nature of
the model is another important aspect of
DBM modelling, which differentiates it from
the alternative deterministic approach.

(6) finally the model is validated.

2. THE JOKULSA RIVER BASIN

The Vatnajökull ice cape is the largest ice cape
in Europe and covers an area of about 8100 km2.
Many outlet glaciers drain its main ice body, each
one of which ends in a glacier river. Among these
the Jokulsa river is the largest one. Its catchment
covers 7380 km2, about 1700 km2 of which are
subglacial. The time series of its flow rate (see Fig.
1) were introduced in the literature of non-linear
modelling by Tong et al. [1985] and have been
used in several non-linear identification problems
[Tong, 1990; Chen and Tsay, 1993].

The curve of Fig. 1a clearly shows the distinctive
profile of the sub-arctic flow scenario, with a single
seasonal peak in summer.

3. CHOICE OF THE MODEL STRUCTURE

Some suggestions on the choice of the model
structure might be issued by mapping daily flow
values against precipitation and temperature data
(Fig. 2a and 2b). At a first glimpse from the
two graphs one would be led to conclude that
temperature is the main driving factor of the flow
and that such influence depends on the very flow.
In fact the general trend of the data indicates
a more than linear increase of flow with the
temperature. Within a SDP modelling prospect
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Fig. 1. Daily flow, precipitation and temperature data over the period Jan. 1, 1972 - Mar. 10, 1974
(estimation data set) for the Jokulsa river. Flow is recorded at Dettifoss station, while precipitation
and temperature are recorded in Hveravellir meteorological station
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Fig. 2. Daily flow against precipitation (a) and against temperature (b), for the river Jokulsa on the
estimation data set.



this suggest that the coefficient expressing the
ratio between flow and temperature must vary
with the flow, on analogy of what is usually done
for the rainfall in the case of simple rainfall-flow
models, where the runoff coefficient is a function
of the flow that acts as a surrogate for the soil
moisture [Young, 2003]. However from Fig. 2a it
would be uncorrect to issue that the precipitation
is not influencing the flow. Indeed, it can be
only inferred that precipitation alone does not
drive the flow, however it can not be excluded
the existence of a coupled effect of temperature
and precipitation on the flow. For that reason we
start considering a two input transfer function as
the general model that describes the daily flow
formation process.

The linear model of the form

A
′
(z)yt = B

′
1(z)ut + B

′
2(z)Tt (2)

where the original inputs T and u were consid-
ered, does not fit data well, due to the strongly
nonlinear behavior of the system. The following
table shows the order of the best three models ob-
tained with the RIV linear identification and the
corresponding data fitting criteria (Young Identi-
fication Criterion (YIC) [Young et al., 1996]) and
coefficient of determination (R2

t ))

den num k YIC Rt2
y u T ku kT

2 2 1 6.3864 0.480630
2 0

2 2 2 5.4150 0.472977
2 1

2 2 0 9.5676 0.466219
2 0

We have thus considered the non linear model

A(z)yt = B1(z)ue
t + B2(z)T e

t (3)

where ue
t and T e

t are the precipitation (ut) and
temperature (Tt) effective inputs, defined as

ue
t = α(yt)ut (4a)

T e
t = β(yt)Tt (4b)

Though the transfer function in eq.(3) maintains
its linear structure, the effective inputs introduce
a non-linearity in the model. The state-dependent
parameters analysis is described in the next sec-
tion.

Note that the effective input T e
t can be also

defined as

T e
t =

{
β(yt)(Tt − T s), if Tt > T s;
0 else. (5)

where T s is the temperature threshold that must
be reached in order to start the snow-melt process.
The T s value is fixed at -5, but this starting
value is then statistically refined during the final
optimization procedure, where it enters as one of
the model parameters.

4. STATE DEPENDENT PARAMETER
MODELLING OF THE NON-LINEARITIES

By means of a State Dependent Parameter (SDP)
procedure state dependent non-linearities in eq.
(4) are investigated and the non-parametric esti-
mates of α and β are obtained, see Fig. 3. The two
curves can be provided with a physically meaning-
ful interpretation. Let’s first focus the attention on
the precipitation parameter α (Fig. 3a). The state
dependency from the flow yt can be physically
interpreted as a catchment storage effect with
respect to the rainfall [Young, 2003], so that the
flow can be assumed as a proxy indicator of the
soil moisture. However, as we consider the whole
precipitation (rainfall plus snowfall), such inter-
pretation must be slightly revised: the low flow
values (Fig. 1a) might be explained as the effect of
the prevailing snowy nature of the winter precip-
itation that does not generate any flow increase,
while simply adds depth to the snowpack. This
latter is definitively working as it were a seasonal
reservoir, releasing in the summer the water stored
during the winter. As an example of this behavior
consider the events marked as A in Fig. 1a that
occur in a winter period, when the precipitation
is almost all trapped in the snowpack.

Consider now the β parameter (Fig. 3b) that
modulates the effect of the temperature on the
flow.

The snow-melt process starts when the daily aver-
age temperature is higher than a threshold value
T , which is usually considered equal to zero. In
the early spring, the temperature overcomes the
threshold only at the lower altitude, therefore the
surface involved in the snow-melt process (accord-
ingly called active surface) is limited to the lower
band of the basin and the snow-melt contribution
is rather limited too. Proceeding with time, tem-
perature grows all over in the basin and goes over
the threshold also at higher and higher altitudes;
the active surface becomes larger and larger and
the snow-melt increases. As the season goes on,
the snow-pack disappears at the lower altitude,
and both the active surface and the contribution
to flow decrease. This trend can be followed on
the same curve, simply moving from the right to
the left, for yt decreasing.

Note that since temperature decreases with al-
titude, the threshold value T = 0 in the lower
band of the basin is reached when the tempera-
ture at Hveravellir station (640 m a.s.l.) is still
negative. Therefore it is not surprising that the
model threshold T s is found to be negative (see
also Fig. 2b, in which flow value starts increasing
when temperature is still negative).
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Fig. 3. Non parametric estimate of the state-dependent parameters α and β. On the horizontal axis,
flow data are sorted in a non-temporal ascending order. In this way, it can be clearly seen that a
functional relationship between flow value and the parameter value exists.

5. PARAMETRIZATION AND
OPTIMIZATION

The final stage of DBM modelling is the para-
metrization of the effective inputs nonlinearity,
whose form and location has been identified by the
nonparametric estimation. Many different para-
meterizations can be used to fit the SDP nonpara-
metric series, such as a power law, polynomial,
negative exponential and radial basis. The best
results have been obtained using a power law in
flow for the rainfall parameter, and a polynomial
for the snow-melt parameter

α(yt) = c1y
c2
t (6a)

β(yt) = c3 + c4yt + c5y
2
t (6b)

It is now possible to further improve the model
performances, through a recursive optimization
procedure (e.g., nonlinear least squares) which
estimates all the model parameters.

Finally, the model error is described as a stochas-
tic process, identified by the following autoregres-
sive model:

et = γ1et−1 + γ2et−2 + γ3et−3 + ξt (7)

where ξt is a zero mean white noise. The noise
term et accounts for all the modelling errors, in-
cluding both noise in the data and approximations

introduced in model identification (such as ignor-
ing the periodicity of snow-melt dynamics).

The final model takes the form

yt =
b10

1 − a1z−1 − a2z−2
ue

t−1+ (8a)

+
b20 + b21z

−1

1 − a1z−1 − a2z−2
T e

t−1 + et

with

ue
t = (c1y

c2
t )ut (8b)

T e
t =

{
(c3 + c4yt + c5y

2
t )(Tt − T s), if Tt > T s;

0 else. (8c)

The model explains the data well, with R2
T =

0.7654. confirms its good performances (R2
T =

0.7443) also on a validation data set, different
from the one used for model estimation (Fig. 4).

6. CONCLUSION

A precipitation-temperature-flow model taking
into consideration snow-melt contribution to the
flow has been presented. The model does not re-
quire other measurements than flow, temperature
and raw precipitation, thus resulting particularly
useful in all those situations, the majority, where
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Fig. 4. Comparison of model output (dotted line) and measured flow (continuous line) over the sample
of the validation data set (Mar. 11, 1974 - Dec. 31, 1974).

these are the only observed data. The model fits
data quite well both on the estimation and the val-
idation set. Such results have been obtained using
only three variables and a simple model structure,
even if the dynamics of the system appears to
be quite complex. To further improve the model
performance periodicity should be explicitly con-
sidered or the number of variables increased in
order to account for the snow-pack decay process.
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