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Abstract: In this paper, a new method for the calculation of all stabilizing PI controllers is given. 
The proposed method is based on plotting the stability boundary locus in the ( ip kk , )-plane and 

then computing the stabilizing values of the parameters of a PI controller. The technique presented 
does not require sweeping over the parameters and also does not need linear programming to solve 
a set of inequalities. Thus it offers several important advantages over existing results obtained in 
this direction. Computation of stabilizing PI controllers which achieve user specified gain and 
phase margins is also studied. Furthermore, the proposed method is used to compute all the 
parameters of a PI controller which stabilize a control system with an interval plant family. 
Examples are given to show the benefits of the method presented.  
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1. INTRODUCTION 
 
There has been a great amount of research work on the 
tuning of PI, PID and lag/lead controllers since these types 
of controllers have been widely used in industries for 
several decades (see Zhuang and Atherton, 1993; Astrom 
and Hagglund, 1995 and references therein). However, 
many important results have been recently reported on 
computation of all stabilizing P, PI and PID controllers 
after the publication of work by Datta, et al., 2000. A new 
and complete analytical solution which is based on the 
generalized version of the Hermite-Biehler theorem has 
been provided in (Datta, et al., 2000) for computation of 
all stabilizing constant gain controllers for a given plant. 
A linear programming solution for characterizing all 
stabilizing PI and PID controllers for a given plant has 
been obtained in (Datta, et al., 2000). This approach 
besides being computationally efficient has revealed 
important structural properties of PI and PID controllers. 
For example, it was shown that for a fixed proportional 
gain, the set of stabilizing integral and derivative gains lie 

in a convex set. This method is very important since it can 
cope with systems that are open loop stable or unstable, 
minimum or nonminimum phase. However, the 
computation time for this approach increases in an 
exponential manner with the order of the system being 
considered. It also needs sweeping over the proportional 
gain to find all stabilizing PI and PID controllers which is 
a disadvantage of the method. An alternative fast approach 
to this problem based on the use of the Nyquist plot has 
been given in (Söylemez, et al., 2003). Computation of the 
lag/lead controller parameters has been given in (Tan and 
Atherton, 1999). A parameter space approach using the 
singular frequency concept has been given in (Ackermann 
and Kaesbauer, 2001) for design of robust PID controllers. 
More direct graphical approaches to this problem based on 
frequency response plots have been given in (Shafiei and 
Shenton, 1997; Huang and Wang, 2000). However, the 
requirement for frequency gridding has become the major 
problem for this approach. Other results related to this 
subject can be found in (Ho, et al., 1998; Tan, et al., 
2002). 



 
In this paper, a new approach for computation of 
stabilizing PI controllers in the parameter plane, ( ip kk , )-

plane is given. The result of (Söylemez, et al., 2003) is 
used to obtain the stability boundary locus over a possible 
smaller range of frequency. Thus, a very fast way of 
calculating the stabilizing values of PI controllers for a 
given single-input single-output (SISO) control system 
with time delay is given. The proposed method is also 
used for computation of PI controller parameters for 
achieving user specified gain and phase margins. The 
proposed method is finally used for computation of PI 
controllers for the stabilization of interval systems. 
 
The paper is organized as follows: the proposed method is 
described in section 2. The design of PI controllers which 
achieve user specified gain and phase margins is given in 
section 3. In section 4, the computation of PI controllers 
for interval plant stabilization is given. Concluding 
remarks are given in section 5. 
 

2. STABILIZATION USING PI CONTROLLER 
 
Consider the SISO control system of Figure 1 where  

     ss
p e

sD

sN
esGsG ττ −− ==

)(

)(
)()(      (1) 

is the plant to be controlled and )(sC  is a PI controller of 

the form 
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The problem is to compute the parameters of the PI 
controller of Eq. (2) which stabilize the system of Figure 
1.  
 
 
 
 
 
 
Fig. 1: A SISO control system 
 
The closed loop characteristic polynomial )(s∆  of the 

system of Figure 1, i.e. the numerator of )()(1 sGsC p+ , 

can be written as 

 s
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Decomposing the numerator and the denominator 
polynomials of )(sG  in Eq. (1) into their even and odd 

parts, and substituting ωjs = , gives 
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For simplicity )( 2ω−  will be dropped in the following 

equations. Thus, the closed loop characteristic polynomial 
of Eq. (3) can be written as 
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Then, equating the real and imaginary parts of )( ωj∆  to 

zero, one obtains 
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and  

         

e

eo

oe

DY

NNU

NNS

ωω
ωτωτωω

ωτωωτωω

−=
−=
+=

)(

)sin()cos()(

)sin()cos()( 2

     (9) 

Then, Eqs. (6) and (7) can be written as 
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From these equations 
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Substituting Eqs. (8) and (9) into Eqs. (11) and (12), it can 
be shown that 
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It can be seen that if the denominator of Eqs. (13) and (14) 

0)()( 222 ≠−+− ωωω oe NN  then the stability boundary 

locus, ),,( ωip kkl , can be constructed in the ( ip kk , )-

plane. Once the stability boundary locus has been obtained 
then it is necessary to test whether stabilizing controllers 
exist or not since the stability boundary locus, 

),,( ωip kkl , and the line 0=ik  may divide the 

parameter plane (( ip kk , )-plane) into stable and unstable 

regions. Here, the line 0=ik  is the boundary line 

obtained from substituting 0=ω  into Eq. (3) and equating 
it to zero since a real root of )(s∆  of Eq. (3) can cross 

over the imaginary axis at 0=s . 
 
It can be seen that the stability boundary locus is 
dependent on the frequency ω  which varies from 0 to ∞ . 
However, one can consider the frequency below the 
critical frequency, cω , or the ultimate frequency since the 

controller operates in this frequency range. Thus, the 

+ _ 
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critical frequency can be used to obtain the stability 
boundary locus over a possible smaller range of frequency 
such as ],0[ cωω ∈ . Since the phase of )(sGp  at 

cjs ω=  is equal to o180− , one can write  
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Thus, cω  is the solution of Eq. (16) in the interval ),0( π . 

By plotting ( )ωτtan  and )(ωf  versus ω , it can be seen 

that cω  is the smallest value of ω  at which plots of 

( )ωτtan  and )(ωf  intersect with each other. 

Example 1: Consider the control system of Figure 1 with 
transfer function 
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which is an unstable second order plus time delay process 
transfer function where 5.0=τ . The aim is to compute all 
the stabilizing values of pk  and ik  which make the 

characteristic polynomial of Eq. (3) Hurwitz stable. From 
Eqs. (13) and (14) 
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For ]60,0[∈ω , the stability boundary locus is shown in 

Figure 2. However, in order to find the stabilizing values 
of pk  and ik , it is only necessary to obtain stability 

boundary locus for ω  below the critical frequency cω . 

From Eq. (16), )()1/(5.1)5.0tan( 2 ωωωω f=+=  and the 

plots of )5.0tan( ω  and )1/(5.1)( 2 += ωωωf  are shown 

in Figure 3 where it has been computed that the value of 
the critical frequency, cω , is found to be 1.2615 rad/sec. 

The region enclosed by the stability boundary locus for 
]2615.1,0[∈ω  and 0=ik  is the stability region which is 

the shaded region shown in Figure 4. Figure 5 shows the 
stability regions for 3.0=τ , 4.0=τ , 5.0=τ  and 8.0=τ  
where it can be seen that the time delay has an important 
affect on the stability region. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Stability boundary locus 

 
Using the Pade approximation and other results, the 
stabilizing pk  and ik  values can be computed. However, 

the result will not be correct as shown in Figure 4. The 
stability region shown in Figure 4 is obtained taking first 

order Pade approximation for se 5.0−  in Eq. (17) and then 
using other methods such as (Datta, et al., 2000). From 
Figure 4, it can be seen that the stability region obtained 
for the first order Pade approximation encloses the shaded 
region which is the correct stability region. For example, 
for 5.2=pk  and 35.0=ik , using the Nyquist plot or 

Bode diagram it can be seen that the system is not stable. 
However, from Figure 4, it can be seen that the system 
after taking the first order Pade approximation is stable for 
these values of pk  and ik . When the order of the Pade 

approximation is increased, the results obtained using 
other methods approach to the shaded region. However, in 
this case, the computation of the stability region will be 
difficult since the order of the system increases and also 
the result may still not be exact. Thus, the approach 
presented in this paper have advantages over existing 
results since it gives exact stability region and it is easy to 
use for the computation of the stability region. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Computation of cω  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Stability region 
 
If there is a stability boundary locus for a given system, it 
does not mean that a stabilizing PI controller exists. Even 



for zero delay, many systems cannot be stabilized by 
simple PI controller. For example, the transfer function 

)4)(2)(1(
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sss
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sG  cannot be stabilized by a PI 

controller. When the stability boundary locus for this 
transfer function has been plotted in the ( ip kk , )-plane it 

can be seen that there is not any stable region. So, one can 
say that both sides of the stability boundary locus may 
correspond to unstable parameter combinations. Thus, it is 
necessary to test whether stabilizing controllers exist or 
not after the stability boundary locus has been constructed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Stability regions for different values of τ  
 

3. STABILIZATION FOR SPECIFIED GAIN AND 
PHASE MARGINS 

 
It is known that the phase and gain margins are two 
important frequency domain performance measures which 
are widely used in classical control theory for controller 
design. The approach given above can also be used for 
achieving user specified gain and phase margins. Consider 

Figure 1 with a gain-phase margin tester, φj
c AesG −=)( , 

which is connected in the feed forward path. Then, using 
Eqs. (8), (9), (11) and (12) it can be found that 
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where φωτ +=h . To obtain the stability boundary locus 
for a given value of gain margin A , one needs to set 

0=φ  in Eqs. (19) and (20). On the other hand, setting 
1=A  in Eqs. (19) and (20), one can obtain the stability 

boundary locus for a given phase margin φ . 

 
Example 2: Consider 
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The aim is to find all stabilizing PI controllers which 
satisfy the conditions that the phase margin of the system 

is greater than o45  and the gain margin is greater than 
4(12.04 db).  
 
To find all stabilizing PI controllers for which the phase 

margins is greater than o45 , it is required to set 1=A  and 
o45=φ  in Eqs. (19) and (20). Using Eqs. (19) and (20) 

for these values of A  and φ  gives, 
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where 
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    ωωωω 78.23675.119169.61175.4 357 −−−=B  
and 
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where 

    2468 78.23675.119169.61175.4 ωωωω −−−=C  

    ωωωω 68.02625.07706.11275.13 357 +−−−=D  
 
To find all stabilizing PI controllers for which the gain 
margin is greater than 4 , in this case, it is required to set 

4=A  and 0=φ  in Eqs. (19) and (20). Using Eqs. (19) 

and (20) for these values of A  and φ  gives, 
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Fig. 6: Stabilizing PI controllers for specified gain and 
phase margins 
 

Thus, the stabilizing PI controllers for 4≥A  and o45≥φ  

are shown in Figure 6. From Figure 6, the values of pk  

and ik  at point P, which is an intersection point of the 

stability boundary locus for o45=φ  and the stability 

boundary locus for 4=A , are 2716.2=pk  and 

7782.0=ik . For these values of parameters it has been 
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computed that the gain margin is equal to 4 and the phase 

margin is equal to o45 . 
 

4. INTERVAL PLANT STABILIZATION 
 
Compensator design in classical control engineering is 
based on a plant with fixed parameters. In the real world, 
however, most practical system models are not known 
exactly, meaning that the system contains uncertainties. 
Much recent work on systems with uncertain parameters 
has been based on Kharitonov’s result (Kharitonov, 1979) 
on the stability of interval polynomials. Using the 
Kharitonov theorem, there have been many developments 
in the field of parametric robust control related to the 
stability and performance analysis of uncertain control 
systems represented as interval plant (Bhattacharyya, et 
al., 1995). The method presented can be applied for the 
case of uncertain parameters as illustrated in the following 
example. 
 
Example 3: Consider the position control system with the 
block diagram of Figure 7, where the motor is assumed to 
have the transfer function 
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fR  and fL  are the resistance and inductance of the field, 

mK  is the motor constant, J  is the inertia, b  is the 

viscous friction and the controller is a PI controller of the 
form of Eq. (2). Here, an integrator is needed for 
elimination of a steady state error to a ramp input or a 
steady state error to a torque disturbance. The major 
uncertainty is assumed to be in the parameters mK , b , 

fL  and J . Initially assume that all these parameters are 

fixed and have the nominal values 31060 −×=mK , 

2.1=fR , 3105.2 −×=b , 2103.1 −×=fL  and 

3102 −×=J . For these nominal values, the nominal 
transfer function of the motor can be written as  
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Using Eqs. (13) and (14), 20405.0 ω=pk   and  

24 05.000043.0 ωω +−=ik . All the stabilizing values of 

pk  and ik  for the nominal transfer function are enclosed 

by noG  in Figure 8.  

 
Assume now that the parameters mK , b , fL  and J  may 

vary by 10%, 15%, 20% and 40% around their nominal 
values, respectively. Then, 

]1066,1054[],[ 33 −− ××=∈ mmm KKK

]109.2,101.2[],[ 33 −− ××=∈ bbb  

]1056.1,1004.1[],[ 22 −− ××=∈ fff LLL

]108.2,102.1[],[ 33 −− ××=∈ JJJ  

Thus, by overbounding the coefficients of Eq. (26), since 
the uncertain parameters of Eq. (26) are multilinearly 
dependent on the above parameters, the transfer function 
of the motor can be written in the form of the interval 
transfer function as follows 
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where ]1066,1054[],[ 33
0

−− ××=∈ mm KKq , ,00 =p  
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]1037.4,1025.1[],[ 55
3
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stabilizing parameters can be calculated for all eight 
Kharitonov plants ( 1=i  to 2 and 1=j  to 4) and their 

bounds are also shown in Figure 8. Obviously in this 
simple case all jG1  are outside jG2  so it is only 

necessary to plot four loci. The interior of all these, which 
is bounded by parts of 21G  and 23G , gives the region of 

all stabilizing parameters for stable control of the 
uncertain system, and is shown in Figure 9. Step responses 
of eight Kharitonov plants of position control system for 

08.0=pk  and 001.0=ik  are shown in Figure 10. 

 
 
 
 
 
 
 
 
 
Fig. 7: Position control system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8: Stability regions of eight Kharitonov plants 
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5. CONCLUSION 
 
In this paper, a graphical approach has been presented for 
the computation of PI controller parameters that guarantee 
stability. The approach is based on the stability boundary 
locus which can be easily obtained by equating the real 
and the imaginary parts of the characteristic equation to 
zero. The computation of PI compensator parameters for 
achieving user specified gain and phase margins have also 
been studied. The proposed method has further been used 
to find the stabilizing region of PI parameters for the 
control of a plant with uncertain parameters. The method 
presented does not require sweeping over the parameters. 
Also, it does not need linear programming to solve a set of 
inequalities. Therefore, the method has advantages over 
existing results. The examples given in the paper clearly 
show the value of the method presented. 
 
The method proposed in Section 2 can be further 
developed for computation of stabilizing PID controllers 
of the form skskksC dip ++= /)( . Using the procedure 

given in Section 2, the stability boundary locus in the 
),( ip kk -plane plane can be obtained for a fixed value of 

dk  or in the ),( dp kk -plane for a fixed value of ik . 

However, it is not possible to obtain the stability boundary 
locus in the ),( di kk -plane for a fixed value of pk  since 

)()()()( ωωωω SRUQ −  will be equal to zero for this case. 

Extension of the method for computation of all stabilizing 
PID controllers is the subject of future work. 
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Fig. 9: Stability region for interval plant of motor 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10: Step responses of Kharitonov plants 
 

 


