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Abstract: In this paper, a new method for the datgon of all stabilizing Pl controllers is given.
The proposed method is based on plotting the &tabibundary locus in thek(,, k; )-plane and

then computing the stabilizing values of the partanseof a PI controller. The technique presented
does not require sweeping over the parameterslaadlaes not need linear programming to solve
a set of inequalities. Thus it offers several intpor advantages over existing results obtained in
this direction. Computation of stabilizing Pl caiters which achieve user specified gain and
phase margins is also studied. Furthermore, theoserl method is used to compute all the
parameters of a Pl controller which stabilize atamnsystem with an interval plant family.
Examples are given to show the benefits of the atefitesented.
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1. INTRODUCTION

in a convex set. This method is very important siiican
There has been a great amount of research worken t cope with systems that are open loop stable orablest
tuning of PI, PID and lag/lead controllers sincestatypes ~ minimum or nonminimum phase. However, the
of controllers have been widely used in industries computation time for this approach increases in an
several decades (see Zhuang and Atherton, 1998mst exponential manner with the order of the systermdei
and Hagglund, 1995 and references therein). Howeverconsidered. It also needs sweeping over the priopait
many important results have been recently repooied gain to find all stabilizing Pl and PID controllesgich is
computation of all stabilizing P, Pl and PID cofits a disadvantage of the method. An alternative fagt@ach
after the publication of work by Dattat al, 2000. A new  to this problem based on the use of the Nyquist ipis
and complete analytical solution which is basedtlmn  been given in (S6ylemeet al, 2003). Computation of the
generalized version of the Hermite-Biehler theoreas lag/lead controller parameters has been given am @nd
been provided in (Dattat al, 2000) for computation of  Atherton, 1999). A parameter space approach udiag t
all stabilizing constant gain controllers for a eivplant. singular frequency concept has been given in (Aoken
A linear programming solution for characterizingl al and Kaesbauer, 2001) for design of robust PID odiats.
stabilizing Pl and PID controllers for a given gldras More direct graphical approaches to this problesetan
been obtained in (Dattaet al, 2000). This approach frequency response plots have been given in (Sreafi
besides being computationally efficient has rewtale Shenton, 1997; Huang and Wang, 2000). However, the
important structural properties of Pl and PID colérs. requirement for frequency gridding has become th@m
For example, it was shown that for a fixed projmovl problem for this approach. Other results relatedhie
gain, the set of stabilizing integral and derivatgains lie ~ subject can be found in (Hat al, 1998; Tan.et al,

2002).



Then, equating the real and imaginary partddf ) to
In this paper, a new approach for computation of zerg, one obtains

stabilizing PI controllers in the parameter plafie,, ki )- kp(‘szo cosr) + N, sin(@r)) +
plane is given. The result of (Séyleme#,al, 2003) is . ) (6)
used to obtain the stability boundary locus ovpossible ki (Ng cos@r) + aNg sin(ar)) =w”Dg

smaller range of frequency. Thus, a very fast wly o and

calculating the stabilizing values of Pl contradlefor a Kp (&N COSET) +a)2Nosin(a)r)) +

given single-input single-output (SISO) control teys @)
with time delay is given. The proposed method &oal ki (aNg cos@r) — Ng sin(wr)) = -aD
used for computation of Pl controller parameters fo |[et
achieving user specified gain and phase marging Th _ : 2
proposed method is finally used for computationPof Q(@) = aNe sin(ar) - w N‘_’ costr)
controllers for the stabilization of interval sysis R(@w) = Ng cos@r) +aN, sin(ar) (8)
. : . X (@) = w’D
The paper is organized as follows: the proposedhookis q (@) =D,
described in section 2. The design of PI contrslighich 2" X
achieve user specified gain and phase marginyéngn S(w) = aNg cos@r) + w” N, sin(wr)
section 3. In section 4, the computation of Pl mafgrs U (@) = aN,, cos@r) — N sin(ar) 9)
for interval plant stabilization is given. Concladi V(@) = —aD
remarks are given in section 5. (@) = )
Then, Egs. (6) and (7) can be written as
2. STABILIZATION USING Pl CONTROLLER ka(a) +kj R(w) = X(w) 10)
10
Consider the SISO control system of Figure 1 where kpS(a)) *+ kiU (@) =Y(w)
G G N(s) s 1 From these equations
p(9)=G(s)e™™® D (1) o = X (w)U () - Y () R(w) )
is the plant to be controlled ar@(s) is a Pl controller of P Q(w)U (w) - R(w)S(w)
the form and
k@ kps+k _ Y(w)Q(w) — X(w) S(w)
C(s) =kp + L =——— ) ki = (12)
s Q(wU (w) — R(w)S(w)

The problem is to compute the parameters of the Plsybstituting Egs. (8) and (9) into Egs. (11) ar®)(it can
controller of Eq. (2) which stabilize the systemFagure be shown that

L. (sz Dy + NoDg) cosr) + a{NyDe — NgDy) singor)
—% C(s) > Gy(s) > —(Ng2 +a?Ny?)
_ (13)
and
‘ _wz(N De — NgDy) €0S7) — NgDg + &P NoDy) Sinr)
Fig. 1: A SISO control system —(Ne +w2NO )
. . (14)
The closed loop characteristic polynomia(s of the |t can be seen that if the denominator of Eqs. &) (14)
system of Figure 1, i.e. the numeratorlofC(s)Gp(s . )  Ng(-w?)+w?N,(-w?) 20 then the stability boundary
can be written as locus, I(kp, ki, @), can be constructed in the {,k;)-
A(s) =sD(s) + (kps+ki)N(s)e ™ (3)  plane. Once the stability boundary locus has bétaired

Decomposing the numerator and the denominatorthen it is necessary to test whether stabilizingtrtclblers
polynomials of G(s) in Eq. (1) into their even and odd €Xist or not since the stability boundary locus,
parts, and substituting = j« , gives I(kp.ki @), and the line kj = 0 may divide the

Ne(—wz) + jaNo(—a)Z) parameter plane K, ki )-plane) into stable and unstable

De(-w?) + jaDy (-e0?)

G(jw) = 4) regions. Here, the linek; = Ois the boundary line

o oy . . _ obtained from substituting = to Eq. (3) and equating
For simplicity (-e”) will be dropped in the following it to zero since a real root ak(s) of Eq. (3) can cross

equations. Thus, the closed loop characteristigruohial over the imaginary axis a= .0
of Eg. (3) can be written as
A(ja) =[(kj Ng —kprNo)costur)+w(ki No +KpNe) It can be seen that the stability boundary locus is

) 2 ) dependent on the frequeney which varies from 0 teo .
sin(r) - Do] + jlalki No +kpNe) coser) - ®) However, one can consider the frequency below the

(ki Ne —a)zkpNo)sin(wr)+aDe] =Ry +jl5 =0 critical frequency,w,, or the ultimate frequency since the
controller operates in this frequency range. Thihe



critical frequency can be used to obtain the stgbil
boundary locus over a possible smaller range ofuizacy Using the Pade approximation and other results, the
such as wl[0,&. ] Since the phase ofG,(s Jat stabilizing k, and k; values can be computed. However,

the result will not be correct as shown in FigureThe

stability region shown in Figure 4 is obtained takffirst

tan_l(aNoJ—tan’l(aDoJ—wr =-m (15) order Pade approximation f& 2% in Eqg. (17) and then
Ne De using other methods such as (Dat,al, 2000). From

s= jw, is equal to—180°, one can write

or Figure 4, it can be seen that the stability regibtained
_ W(NgDe =NgDy) for the first order Pade approximation enclosesstieded
tar‘(a)r)— °—< > 20 = f(w) (16) region which is the correct stability region. Foample,

NgDe +w“NgDg

for k, =25 and k; = 035 using the Nyquist plot or

Th is th uti f EQ. (16) in the i . : . .
us: a)_c 's the solution of Eq. (16) in t ? interved, 7z .. ) Bode diagram it can be seen that the system istabte.
By plotting tan(wr) and f () versusc , it can be seen However, from Figure 4, it can be seen that theesys

that @, is the smallest value of. at which plots of  after taking the first order Pade approximatiostéble for

tan(wr) and f («) intersect with each other. these values ok, and k;. When the order of the Pade
Example 1: Consider the control system of Figure 1 with approximation is increased, the results obtaineihgus
transfer function other methods approach to the shaded region. Hawieve
1 _05s this case, the computation of the stability regiafi be
Go(S)=F————~e (17)  difficult since the order of the system increased also

o (05s+1)(2s-1) ) the result may still not be exact. Thus, the apgmoa
which is an unstable second order plus time detaggss presented in this paper have advantages over rexisti

transfer function where = 0.5The aim is to compute all  regyits since it gives exact stability region anis asy to
the stabilizing values ofk, and k; which make the  use for the computation of the stability region.
characteristic polynomial of Eq. (3) Hurwitz stabfgom

Egs. (13) and (14) 1 . . . . . .

kp = (@ +1) cos@) + 1L5wsin(w)

(18) GELS
ki =15w? cos@) + w(-w? —1) sin(w)
For . 0[060], the stability boundary locus is shown in  _ost
Figure 2. However, in order to find the stabilizinglues
of kp and k;, it is only necessary to obtain stability

flo)=1 .50/ +1)

07

tan(0.5q) and fig

boundary locus fora. below the critical frequencyu,.

06+
From Eq. (16),tan(05w) = 15w/(w? +1) = f (w )and the

plots of tan(05«) and f (w) = L5w/(w? + 1) are shown 05f tan(0.50)

in Figure 3 where it has been computed that thaevaf |/

the critical frequency¢,, is found to be 1.2615 rad/sec. e e ; e e e o o
The region enclosed by the stability boundary lofars o

@ [1[01.2619 and k; = Ois the stability region which is ~ Fig. 3: Computation otu

the shaded region shown in Figure 4. Figure 5 shbes

stability regions forr = 037=04, r=05and7= 08 048

where it can be seen that the time delay has aoriamqt i stabity region 1
™ . using first araer
affect on the Stablllty region. 035k F‘adg approximation |
8
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for zero delay, many systems cannot be stabilizgd b
simple Pl controller. For example, the transfercfion
G(9) = (s-D(s-3)
(s+D(s—-2)(s—-4)
controller. When the stability boundary locus fdrist
transfer function has been plotted in the, (k; )-plane it

cannot be stabilized by a PI

can be seen that there is not any stable regigror&ocan
say that both sides of the stability boundary loousy
correspond to unstable parameter combinations., Tthiss
necessary to test whether stabilizing controlledisteor
not after the stability boundary locus has beerstanted.
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Fig. 5: Stability regions for different values pf

3. STABILIZATION FOR SPECIFIED GAIN AND
PHASE MARGINS

It is known that the phase and gain margins are two

important frequency domain performance measureshwhi
are widely used in classical control theory for tcolter
design. The approach given above can also be wsed f
achieving user specified gain and phase marginssi@er

Figure 1 with a gain-phase margin test@g,(s) = AeI?,

which is connected in the feed forward path. Thesing
Egs. (8), (9), (11) and (12) it can be found that

— (szoDo +NgDg) cosh)) +a(NgDe —NeDy) sin)

k
P _A(Nez +w2N02)
(19)
and
. = &P (NoDe ~NeDy) cost) ~a(NeDe + & NoDy) sinf)

_A(Nez +w2N02)

(20)
where h=ar +¢. To obtain the stability boundary locus
for a given value of gain margird, one needs to set

¢=0 in Eqgs. (19) and (20). On the other hand, setting

A=1 in Egs. (19) and (20), one can obtain the stgbilit
boundary locus for a given phase margin

Example 2: Consider
137s% +198s+ 068
3s® +14s* +2375s° +1875s% + 7s+1

The aim is to find all stabilizing Pl controllershigh
satisfy the conditions that the phase margin ofsystem

Gp(9 = (21)

is greater thand5’ and the gain margin is greater than
4(12.04 db).

To find all stabilizing Pl controllers for which éhphase
margins is greater tha#5’ , it is required to sef =1 and
@=45" in Egs. (19) and (20). Using Egs. (19) and (20)
for these values oA and ¢ gives,
Acos(r/4) + Bsin(rr/ 4)

k. =
-1.88380" - 2.05380° - 0.4624

b (22)

where
A=-132750° -11.77060" - 0.26250° + 068

B=4117%" -6.916Q° -11.3675%° — 278w
and

K = Ccos(@r/4)-Dsin(ir/ 4)
' _1.88380% - 2.053a0° - 0.4624

(23)

where
C=4117%° -6.916,° -11.36750* - 27802
D =-132750" -117706w° - 0.26250° + 068w

To find all stabilizing PI controllers for which éhgain
margin is greater thad, in this case, it is required to set
A=4 and ¢=0 in Egs. (19) and (20). Using Egs. (19)
and (20) for these values &f and ¢ gives,

_132750° +11.77060" +0.26250% - 068

Kp : . (24)
418838 + 2053802 +0.4624)
and
o = -411750° +69162° +113675" + 278w (25)
' 4188380 + 2.053802 +0.4624)
1.2
Stability boundary
locus for A= 4 b
P Stability boundary
gk S locus for = 457
06F B
e Stahility regian far
0.4t Azdand ¢z 458° 1
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Fig. 6: Stabilizing PI controllers for specifiedigand
phase margins

Thus, the stabilizing Pl controllers foh> 4 and ¢= 45
are shown in Figure 6. From Figure 6, the valuek gf

and k; at point P, which is an intersection point of the

stability boundary locus forg=45" and the stability
boundary locus for A=4, are k,=2 2716 and

k; =0.7782. For these values of parameters it has been



computed that the gain margin is equal to 4 ancghiase
margin is equal tai5’ .

4. INTERVAL PLANT STABILIZATION

Compensator design in classical control engineertng
based on a plant with fixed parameters. In the wesld,

L¢ O[L¢,L¢]=[104x1072 156x1072]
JO[J,3]=[12x1073 28%x107%]

Thus, by overbounding the coefficients of Eq. (Zijce
the uncertain parameters of Eqg. (26) are multililyea
dependent on the above parameters, the transfetidan
of the motor can be written in the form of the itd

however, most practical system models are not knowntransfer function as follows

exactly, meaning that the system contains unceig¢ain
Much recent work on systems with uncertain pararsete
has been based on Kharitonov’s result (Kharitod®,9)

on the stability of interval polynomials. Using the
Kharitonov theorem, there have been many develofamen
in the field of parametric robust control relatesl the
stability and performance analysis of uncertain ticdn
systems represented as interval plant (Bhattachasty
al., 1995). The method presented can be applied for th
case of uncertain parameters as illustrated ificlf@ving
example.

Example 3: Consider the position control system with the
block diagram of Figure 7, where the motor is assiino
have the transfer function

G(s) = Ko

S(Js+b)(Lss+Ry)
- Km
L 383 +(bL; +JR;)s? +bR; s
R and L; are the resistance and inductance of the field,

(26)

Km is the motor constant]) is the inertia,b is the
viscous friction and the controller is a PI corigplof the
form of Eqg. (2). Here, an integrator is needed for
elimination of a steady state error to a ramp inpuia
steady state error to a torque disturbance. Theormaj
uncertainty is assumed to be in the parametéss, b,

L; and J. Initially assume that all these parameters are
fixed and have the nominal valuek,, = 60x1072,
R; =12, b=25x10"°, L;=13x102 and
J=2x10"2. For these nominal values, the nominal
transfer function of the motor can be written as
60
Gno(s) = > (27)
s(0.0265° + 243s+3)

Using Egs. (13) and (14)k, =00405°  and

k; =-0.000430* + 005w? . All the stabilizing values of
kp and k; for the nominal transfer function are enclosed

by G, in Figure 8.

Assume now that the parameté(s,, b, L; andJ may

vary by 10%, 15%, 20% and 40% around their nominal
values, respectively. Then,

Km O[Km, Km] = [54x1073 6x107%]
bO[b,b] = [21x1072 29x107°]

Jdo
3 2
P3S™ + PaS” + P1S+ Po
where g O[Km, K] = [54x107° 66x107°],

G(s) = (28)

Po =0,
py O[bR¢ ,bR; ] = [252x10™° 348x107%]
p, O[bLs +JR¢,bL¢ +JR;] = [146x107° 34x1073)

p3O[L¢ J,L¢ J] = [125x10™° 437x107°]. The

stabilizing parameters can be calculated for afhtei
Kharitonov plants (= 1to 2 and j=1 to 4) and their
bounds are also shown in Figure 8. Obviously irs thi
simple case allGy; are outsideGy; so it is only
necessary to plot four loci. The interior of alefie, which
is bounded by parts dB,; and G,3, gives the region of
all stabilizing parameters for stable control ofe th

uncertain system, and is shown in Figure 9. Stepamses
of eight Kharitonov plants of position control syst for

kp = 008 andk; = 0. 001are shown in Figure 10.
d(t
+ ®
r(t) y
O—Q> ci) —>O—| G(s) ¥
controller motor
Fig. 7: Position control system
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5. CONCLUSION

In this paper, a graphical approach has been pesséor
the computation of PI controller parameters thargntee
stability. The approach is based on the stabildyrigary
locus which can be easily obtained by equatingréze
and the imaginary parts of the characteristic égnato
zero. The computation of Pl compensator paraméters
achieving user specified gain and phase margins h®so
been studied. The proposed method has further lseth
to find the stabilizing region of Pl parameters the
control of a plant with uncertain parameters. Thethad
presented does not require sweeping over the pszesne
Also, it does not need linear programming to sahset of
inequalities. Therefore, the method has advantages
existing results. The examples given in the papearly
show the value of the method presented.
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