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Abstract: Inthis paper, Set Membership functions estimation methodology is employed in the approximation of a
given predictive control law. Thisis obtained via the evaluation of an approximating function with a desired level of
accuracy, fulfilling input and/or state constraint and whose computational time is independent on the MPC control
horizon. Then, as the control computation is simply reduced to the evaluation of a static non linear function, the
computational time are significantly reduced leading to a“Fast” Model Predictive Control implementation (FMPC).
The application to a semi-active suspension control design will show the properties of the proposed methodology.
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1. INTRODUCTION

Model Predictive Control (MPC) (see e.g. the recent
survey Mayne et al., 2000) is a model based con-
trol technique especially suited in dealing with input
and/or state constraints. The control action is com-
puted by solving at each sampling time an optimiza-
tion problem which uses the current system state as
the initial condition. Then, according to the receding
horizon principle, only thefirst component of the com-
puted control movesis really applied to the plant. Se-
vere limitations in using MPC techniques arise when
the plant dynamics require small sampling periods
which do not alow to perform the optimization prob-
lem on line. On the other hand, recent studies have
shown that the application of predictive techniquesis
receiving an increasing attention in industrial world
due to its efficiency in constraints handling (see e.g.
Takatsu and Itoh (1999)). This motivates the recent
research efforts devoted to develop computationally
tractable MPC solutions. In general, the control move
u & time t, for time invariant systems, is a nonlinear
static function of the system state x; i.e. uy = f(xy).
In particular, in Bemporad et al. (2002) and in Seron
et al. (2003) explicit piece-wise linear solutions of
the MPC problem have been introduced. They are
based on a state space partition in polyhedral regions
inside which the control law is an affine function of
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the system state that can be precomputed, stored and
implemented online. It has to be noted that also in
the case of min-max model predictive control in pres-
ence of bounded uncertainties the resulting controller
is piecewise linear (see e.g. Ramirez and Camacho
(2001)). While such approach is quite attractive, asthe
on-line optimization is avoided, it may have serious
limitations as, at each sampling time, it has to be
determined the polyhedral region the initial state lies
in. However, the number of subregions hastypically a
very fast increase with the dimension of state space n
and of the control horizon N, leading to large com-
putational complexity even for moderate values of n
and N, (greater than few unities) giving severe limita-
tions to on-line application of the procedure. In order
to overcome this problem more efficient evaluation
methodol ogies have been introduced. They rangefrom
the construction of a binary search tree to evaluate the
exact control law achieving logarithmic computational
time in the number of regions to the construction of
suboptimal approximations ofthe control law (see e.g.
Johansen et al. (2002) and the references therein).
A different approach has been introduced in Parisini
and Zoppoli (1995) and Ramirez et al. (2004) where
a neura approximation of the static function f is
considered, based on the off-line computation of the
values of the function f(z) a a given number N,
of points x. The problems with such an approach
are the trapping in local minima during the learning
phase and the difficulty of handling the constraints in
the image set of the function to be approximated. In



order to circumvent such problems, in this paper the
approximation of f from the evaluated values f(xy)
is performed using the Set Membership approach to
nonlinear function estimation proposed in Milanese
and Novara (2004) for nonlinear system identification.
The set of al piece-wise affine functions, satisfying
the constraints and the given values at eval uated points
x, isconsidered and the best approximation to this set
in L, norm (i.e. the Chebicheff center) is computed.
The approximation is convergent to the true function f
as the number of evaluated pointsisincreased and for
finite number of pointsatight bound on the guaranteed
L,, error is derived.

2. MODEL PREDICTIVE CONTROL
Consider the following linear state space model:

yr = Cay @

{ Ti41 = A.’L’t + But
where z; € R™, u; € R™ and y; € RP arethe system
state, input and output respectively. Assume that the
problem is to regulate the system state to the origin
under someinput and state constraints. By defining the
prediction horizon NV, the control horizon N, < N,
(for simplicity the assumption NV, = N, = N will
be adopted), and suitable positive definite matrices
P>=0,Q=Q" ~0and R = RT - 0, aquadratic
objective function J can be defined:

J(U, 24, N) = x?+N|tht+N|t+
N-1
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where:

x4 1)+ denotes k step ahead state prediction using the
model (1), given theinput sequence uy;, - . ., Uy k—1¢

andthe“initial” statex, ), = x;, U = [uy, .-
is the vector of the control moves to be optimized.
The input and state constraints can be expressed as
Fxt-ﬁ—k:\t + Gut+k|t S H, k = 1, NN 7]\[ where F,
G and H are suitable matrices.

The MPC control law is then obtained applying the
following receding horizon strategy:

(1) Attimeinstant ¢, get z;.
(2) Solve the quadratic problem:

I’IlUll’l J(Uv Lty N) (3&)
subject to
Ti+1 = Al’t -+ But (3b)

Fxt-‘rk\t + Gut-‘rk\t < Ha k= 13 . '7N (3C)

(3) Apply the first element of the solution sequence
U to the optimization problem as the actual con-
trol action u; = .

(4) Repeat the whole procedure at time ¢ + 1.

The application of the receding horizon controller
gives rise to a nonlinear state feedback configuration
as depicted in Figure 1 where control law resultsto be
atime invariant static function of the system state
atimetie.:
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Fig. 1. MPC control as nonlinear static state feedback

One of the key issues in the design of predictive
controllers is the choice of the design parameters P,
@, R, N, etc. of the optimization problem (3) so
to guarantee the stability of the obtained feedback
system. For a detailed description on how to make
such choices the reader is referred to e.g. Mayne et
al. (2000).

3. FAST IMPLEMENTATION OF MODEL
PREDICTIVE CONTROL

The MPC control u; results to be a nonlinear static
function of z;, i.e.:

uy = f(xt)

For given x, the value of the function f(x;) is typ-
ically computed by solving the optimization problem
(3). However, in many applications, this task cannot
be performed online within the required sampling pe-
riod, thus limiting the application of MPC to “slow”
processes. Here a method is proposed, based on a Set
Membership approach to function approximation.

Consider abounded region X C R™ where state x can
evolve.

A number v of values of f(x) may be derived by
performing off-line the MPC procedure starting from
initial conditionsz, € X, k=1,...,v, sothat:

g = f(Zx), k=1,...,v 5)

The aim is to derive, from these known values of 1y,
and z;, and from known properties of f, an approx-

imation f of f and a measure of the approximation
error, in term of the L,(X) norm p € [1,00], de-

1

fined as || f[l, = [[x |[f (2)[" dz]”, p € [1,00) and
[[flloc =€SSsup ey |f (@)]-

For the sake of simplicity, the case of single input,
input saturation constraint |ugz| < 1 and uniform
gridding of X is considered, but the extension to the
genera case is straightforward.

Function f(z) is &ffine over a finite number u of
polyhedral subregions D;, j = 1,...,p of state
space, (Bemporad et al., 2002; Seron et al., 2003). Let
f; thegradient of f(x) within region D; and define:

v = max |[|fill (6)
J=1,.,p

Then f € A,, where A, is the set of al continuous
piecewise affine function on X, such that |f(z)| <
1, Vo € X and |[f}(z)|[2 < v fordl z € X where



f/(x) is defined. This prior information on function
f, combined with the knowledge of the value of the
function at thepointsz, € X, k=1,...,v, alows
to conclude that:

feFFS @)
wherethe set F'F'S (Feasible Functions Set) is defined
as.

FFS={fe A, : f(&) =ix k=1,...,v}
©)

In this paper, the aim is to derive an approximation of
f using theinformation f € F'F'S, which summarizes
the information that f is piecewise affine and the

knowledge of its v evaluated values (5). For given f ~
f, the related L, approximetion error is Hf — fH .
This error cannot be exactly computed, but itsti ghtegt
bound is given by:
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where E( A) is called (guaranteed) approximation er-
ror.

A function f* iscalled an optimal approximation if:

~

E(f*) :H]%\fE(f) irp

The quantity r,, called radius of information, gives
the minimal L,, approximation error that can be guar-
anteed.

It is aso of interest to evaluate, for given x € X,
the tightest lower and upper boundson f(x). They are
given as:

f@)<fx)<f(r),Voe X (10)
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where: flz)= suwp f(2)
fEFFS 5 (11)
f()=inf f(x)
feFFs

are called optimal bounds.

Next result gives the solution to the problem of opti-
mal bounds evaluation.

Theorem 1
The optimal bounds can be computed as:
f (@) = min[l, min (@ +7 [~ )]
f (@) = max[~1, max (@ —7 o~ Zxl)]
(12
Proof: see Canale and Milanese (2004)

Finding optimal bounds is aso instrumental to solve
the optimal approximation problem, as given in the
next result.

Theorem 2
i) The function:

Fa=yF@+fE

is an optimal approximation for any L,(X) norm,
with p € [1, o0

ii) The radius of information is given by:

’I"p_

=27 -1, (14)

iii) For given v, it results:
1 —
1F = f*llp < SIF = fllp, ¥p € [L,00]  (15)

iv) The approximation error of f* is pointwise conver-
gent to zero:
lim |f(z) — f*(z)|=0, Ve € X (16)

V— 00

Proof: see Canale and Milanese (2004)

The value of ~ defined in (6) can be computed by
using the results in (Bemporad et al., 2002; Seron
et al., 2003), whenever computationally feasible or
convenient. Alternatively, an estimate 5 can be derived
asfollows:

= inf v (17)
v:f (&) >0, k=1,...,v

The next result show that this estimate is convergent
to .

Theorem 3
lim 7 =~ (18

v—00

Proof: see Canale and Milanese (2004)

The above described Fast Model Predictive Control
implementation isbased on aSM approximation of the
static nonlinear function f that represents the control
law. While in the present paper the developments
have been worked out for piecewise linear functions,
the same procedure can be easily extended to cases
in which the control law is represented by a static
function arising from the computation of predictive
controllers based on nonlinear systems.

4. EXAMPLE: SEMI ACTIVE SUSPENSION
DESIGN

In order to show its effectiveness, the proposed FMPC
strategy is applied to semi-active suspension control.
The design of controlled suspension systems aims
to enhance the vehicle performances with regard to
ride comfort and road handling. Such performance
requirements have received, in the last two decades,
a growing interest witnessed by an intense research
activity developed from both industrial and academic
sides (see Hrovat (1997)). At present, a widely used
semi-active technique in commercial cars is the On-
Off Sky-Hook strategy (see e.g. Hrovat (1997)).

Consider the quarter-car model of Figure 2(a). In the
schemem,. isthe sprung mass (quarter of car body and
passenger mass), m,, is the unsprung mass (whesl,
tyre, and other suspension components) and z¢, z*, 2"
are the vertical positions of the sprung mass, the un-
sprung mass, and the road profile, respectively. More-
over, k,, and 3, are the tyre stiffness and damping
coefficient respectively, k is the suspension spring
constant and w(t) is the damper force.
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Fig. 2. (8 Quarter-car suspension schematic. (b)
Quarter-car semi-active suspension schematic

The quarter-car model dynamics are given by the
following set of differential equations

M = —k (2° — 2") +u
Mz’ =k(2°—=2"Y) —u—ky (2 = 2")+ (19)
7ﬂw (Zw - ZT)

These equations can be rewritten in a state space form
as:
&(t) = Acx(t) + Beu(t) + Begd(t) (20)

wherez = [2¢ 2% 3¢ 3*]” isthe system state, d(t) =
[2" "] isan unmeasurableinput from road and A.., B.
and B,y are suitable matrices. By choosing a suitable
sampling interval T and discretization techniques, a
discrete time model may be obtained in state space
form:

Ti41 = A.’Et + But -+ det (21)

In semi-active suspensions systems the damper force
isu(t) = Bt) (2% (t) — 2°(t)), where the damp-
ing coefficient 5(t) is variable. In Figure 3 the be-
haviour of atypical force-current map for a commer-
cial damper isshown. As amatter of factsthe variable
damping properties are realized by means of an ap-
propriate driving current ¢(¢) which can be computed
using the map in Figure 3.
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Fig. 3. Damper map

Now, observing Figure 3, it can be seen that the
straight lines having cartesian equation

U = B1vye + 1
u = ﬂQUwc + a9
U = P3Vye + Qs (22
U= 54Uwc + oy
U= ﬁf)vwc + a5

for suitable values of the real parameters ; > 0 and
a;,fori =1,...,5 define the shadow bounded region
in which the control force u(t) must lay. Such aregion
establishes the allowable value for the control force
u(t) that can be actuated by the semi-active damper
device. Then, the semi-active control strategy, in or-
der to ensure the feasibility of the suspension forces,
must be computed guaranteeing the satisfaction of the
passivity constraint:

Ui, min (Uwc) S (% S Ui, max (vwc)

This constraint can be written in amore detailed form
as:

u < Broye + ay
if vye >0 {U<ﬂszc+az
u 2 ﬁ4vwc + ay

(23)
u < B3y + a3
if Ve < 0 { u > 62”11;(: + a2
U > BsVwe + a5

It has to be noted that the passivity constraints are de-
fined in different ways according to the sign of the pre-
dicted suspension relative speed vy, 14kt = CTyqp)
(withC = (0 0 — 1 1)). Thus the sign of vy,c 14|
introduces, inside the prediction horizon, the necessity
to switch between the constraints to be satisfied. This
situation can be formulated as a predictive control
scheme involving logic constraints whose solution can
be computed by means of mixed integer program-
ming techniques (see Bemporad and Morari (1999) for
details). An effective semi-active suspension control
strategy requires to balance a set of comfort and han-
dling specificationsthat can be formulated by the opti-
mization of asuitable performanceindex subject to the
passivity constraint (23). The cited Sky-Hook control
satisfies the constraint at each current time, without
considering its effects on future time. This may cause
relevant limitations in achievable performances, be-
cause the dynamic evolution of the overall system
is not taken into account. Model Predictive Control
appears to be a more appropriate technique able to
handlethe control design accounting for both passivity
constraints and dynamic evolution of involved vari-
ables (accelerations, velocities and positions). Indeed,
MPC can give significant performancesimprovements
over Sky-Hook as shown in Canale et al. (2005).

The MPC design procedure has been applied to the
considered quarter car suspension system with the
following values of the parameters:

m. = 432.82 kg; m,, =40 kg; k = 17200 N/m;
k., = 200000 N/m; (3, = 10000 Ns/m.
The passivity constraint (23) has been taken into ac-

count by using the following parameters:

B3 = Ba=Lmin = 1500 Ns/m
ﬂl = ﬂZ = ﬁ5£6max = 5000 NS/m (24)

a; =0, i=1,...,5.

The optimization problem (3) has been formulated by
taking into account prediction and control horizons
such that N = N, = N, = 10 and the following
weighting matrices in the quadratic cost function J:
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In order to evaluate the performances of the obtained
control, benchmark road profiles have been employed
according to standard industrial tests (see Milanese et
al. (2004)). In particular, the following road profiles
are taken into account:

- Random: road with random profile, maximum am-
plitude of 0.015 m and run at 60 km /h for aduration
of 14 s.

- English Track: road withirregularly spaced holesand
bumps, maximum amplitude of 0.025 m and run at
60 km/h for aduration of 14 s.

- Short Back: impulse road profile, maximum ampli-
tude of 0.015 m and run at 30 km/h for aduration of
14 s.

- Motorway: level road profile, maximum amplitude
of 0.008 m and run at 140 km/h for aduration of 14
S.
- Pavé Track: road profile with small amplitude irreg-
ularities, maximum amplitude of 0.015 m and run at
60 km/h for aduration of 14 s.

- Drain Well: negative impulse road profile, maximum
amplitude of 0.035 m and run a 60 km/h for a
duration of 14 s.

Given such MPC problem definition, the correspond-
ing FMPC approximation has to be computed. The
procedure may be summarized as follows:

- in order to generate the set of the state data 7, k =
1,...,v, aset consisting of v points in the R* space,
considered asinitia conditions (z;) values is suitably
defined;

- starting from each of the v initial condition defined
above, the first control move (u,) is computed, on the
basis of (3) giving rise to a set of the control data

ﬂk,kil,...,lj,

- the parameter ~ defined in (6) has been estimated
using (17);

- the FMPC controller is then computed using the
function f*(-) defined by means of (12) and (13).

In order to generate the state data &, several simula-
tions of the considered MPC law have been performed
using the above defined standard set of road profiles
z". The results of such simulations allowed to define
the bounded region X € R* where the state 2 evolves.
In particular the set X resulted to be the polyhedronin
R* defined by the following inequalities:

X = {[ZC Zw ZC 2-:11)] c R4 .
—0.0082 < 2¢ < 0.0105 —0.0256 < z* < 0.0229
—0.086 < 2°<0.115 —0.938 < ¥ <0.115}

Using (17) the value v = 250000 has been computed.
Then, on the basis of the data z;, and 4y, the computed
value of ~ and the constraints (23) the FMPC control
law f*(-) has been computed using (12) and (13). In
order to show the properties of the computed FMPC
regulator the English track road profile defined above
has been employed.

Just to have an idea of the achievable ride comfort
performances that can be achieved applying predictive
techniques, in Figure 4 a sel ected sampl e of the sprung
mass acceleration z,. is reported and compared with
the corresponding results obtained by Sky-Hook con-
trol (more details can befound in Canadeet al. (2005)).
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Fig. 4. Sprung mass acceleration MPC (solid) Sky-
hook (dotted).

In Figure 5 the generated suspension forces by the
MPC and the FMPC controllers are reported and com-
pared. As it can be seen the plotted lines practically
coincide proving that the FMPC control provides a
high level of approximation of the designed MPC
controller. In Figure 6, a typical sample of the force
computed by the FMPC controller is compared with
the corresponding limitations given by the passivity
constraints: it can be noted that the proposed FMPC
approach does not violate the force limitations.
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Fig. 5. Suspension force comparison FMPC (solid)
and MPC (dotted).

Moreover, in order to have an idea of the achievable
performances, in Figure 7 a comparison of the sprung
mass acceleration Z. behaviour obtained using MPC
and FMPC. As it can be noted, due to the similar
course of the suspension forces also the performances
achieved by FMPC are quite near to the ones of MPC.

The computation of the MPC controller has been re-
alized using interpreted code in MatLab 6.1 environ-
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ment on an Intel Xeon 2.4 GHz platform giving rise
to a mean computational time for each control move
u, Of about 5.0 ms. It has to be noted that if a Neural
Network approach is adopted, smaller computational
times can be obtained. On the other hand such ap-
proach does not allow to take directly into account
input and/or state constraints. The function evaluation
involved in FMPC computation has been performed
using the genera formula (12). Such formula is not
optimized for on-line computation and at present more
effective solutions are under development.

5. CONCLUSIONS

In this paper the application of Set Membership func-
tions approximation methodol ogies have been investi-
gated in the implementation of a given predictive con-
trol law. Thisis obtained via the evaluation of an ap-
proximating function with adesired level of accuracy,
fulfilling input and/or state constraint and whose com-
putational time is independent on the MPC control
horizon. Then, asthe control computationissimply re-
duced to the evaluation of a static non linear function,
the computational time are significantly reduced lead-
ing to a“Fast” Model Predictive Control implementa-
tion. This way, it may overcome the problems related

to the computational time and memory requirements
for large control horizons arising in piecewise affine
implementations and in the constraints satisfaction in
neural networks approximation approaches. The ef-
fectiveness of the proposed methodology has been
shown by the application to a semi-active suspension
control design.
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