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Abstract: We examine the control problem of curve-tracking for fully-actuated
mechanical systems, applied to walking robots. First, we discuss earlier results on
curve-tracking using a change of coordinates to split the kinetic energy in a desired
and an undesired part. Then, we apply and extend these results to the case of a
compass-gait biped, and show in a simulation how its robustness against surface
height variations can be increased. Copyright c©2005 IFAC
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1. INTRODUCTION

Passive walkers, as introduced in (McGeer, 1989),
have taken an important place in research on
walking robots: seemingly simple robots are able
to walk down slopes in perfectly natural-looking
motion, even though they are completely uncon-
trolled and only get their energy from gravity.

Unfortunately, these types of walking robots are
not very robust against disturbances. Experi-
ments (Collins et al., 2001) have shown that care-
ful engineering and tuning is necessary to obtain
a stable gait, and also theoretical research has
shown that the limit cycles often only have a
narrow region of attraction.

In this paper, we discuss a method for adding
a controller to the robot that does not disturb
the nominal passive walking cycle but provides
a corrective action only when the robot deviates
from the nominal behavior (e.g. because of a dis-
turbance). The controller is based on the general
results of (Duindam and Stramigioli, 2005) but
slightly adapted to the case of a walking robot. It
consists of a cascade port-interconnection of sev-
eral power-continuous sub-controllers for specific
subgoals, plus a passive energy-shaping controller.

The general control goal is for a mechanical sys-
tem to move asymptotically along a certain pre-
described subspace of the configuration space. For
the walking robot, we take as this desired subspace
the nominal path (a one-dimensional subspace)
that it would follow during uncontrolled passive
walking.

The control idea in this paper is related to the
Passive Velocity Field Control (PVFC) strategy
described in (Li and Horowitz, 1995; Li and
Horowitz, 1999), but the main differences are (1)
PVFC uses temporal energy storage in the form of
a virtual flywheel whereas our approach is power-
continuous, and (2) PVFC aims to have the veloc-
ity equal to a fixed multiple of a vector field, while
we just wish to have the velocity in the direction of
the vector field; the magnitude is not important.

The remainder of this paper is structured as fol-
lows. Section 2 describes the framework of port-
Hamiltonian systems which is used throughout
the paper. Section 3 then summarizes earlier re-
sults in port-based control of fully-actuated me-
chanical systems. Section 4 adapts and applies
these results to the case of a simple bipedal robot
and shows how robustness is increased. Finally,



Section 5 summarizes the main conclusions of the
paper and presents an outlook on future work.

2. PORT-HAMILTONIAN SYSTEMS

A general explicit port-Hamiltonian system is a
dynamical system that can be represented by a
set of differential equations of the following form











ẋ = (J(x) − R(x))
∂H(x)

∂x
+ g(x)u

y = gT (x)
∂H(x)

∂x
+ (K(x) + S(x)) u

(1)

in which x ∈ X is the state, H : X → R is the
(differentiable) energy function, J(x) and K(x)
are skew-symmetric matrices (to model power-
continuous elements), R(x) and S(x) are positive
semi-definite matrices (to model dissipative ele-
ments), and (u, y) ∈ U × U∗ is the port through
which the system can interact with e.g. a con-
troller. For systems of this form it is straightfor-
ward to show that Ḣ ≤ uT y, i.e., the system is
passive with respect to the port (u, y) with stor-
age function H. Several generalizations for this
kind of systems exist, e.g. more general implicit
formulations, and we refer the interested reader to
(van der Schaft, 2000) and (Blankenstein, 2000).

In this paper, we consider the subclass of mechan-
ical systems (with H the mechanical energy) and
we start from a conservative simple mechanical
system (a system for which the total energy is
the sum of kinetic and potential energy). The
dynamics of such a system can be described in
port-Hamiltonian form as
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where (q, p) are the generalized positions and
momenta, i.e., the canonical coordinates on the
cotangent bundle, and H equals

H(q, p) =
1

2
pT M−1(q)p + V (q). (3)

The first term of H is the kinetic energy (with
M(q) the symmetric positive-definite mass ma-
trix), the second term is the potential energy.
Systems described in these coordinates (q, p) with
J as shown are called symplectic systems.

The mass matrix M defines a metric on the
tangent bundle (the space of all velocities) and
hence an inner product between two vectors v

and w as 〈v, w〉 = vT Mw. Similarly, M defines
an inner product on the cotangent bundle (the

space of all momenta) acting on covectors p and
r as 〈p, r〉 = pT M−1r.

3. PORT-BASED CURVE TRACKING

Before turning to the case of walking robots, we
first look at a general fully-actuated simple me-
chanical system described by (2) with B invert-
ible. As stated in Section 1, the control goal is
to make the system converge to a motion along
some pre-described subspace Qd ⊂ Q (with Q the
configuration manifold), for example a curve (one-
dimensional subspace). In this section, we general-
ize the results of (Duindam and Stramigioli, 2005)
to the case of a multi-dimensional subspace.

Instead of immediately trying to tackle the prob-
lem of convergence to Qd, we first relax the con-
trol goal as follows: in addition to Qd, we de-
fine a family of non-intersecting submanifolds, one
through each point of Q, in the form of a smooth
distribution on Q (a set of non-zero independent
vector fields). This distribution is represented by a
smoothly varying n×m matrix D(q), the columns
of which are the vector fields 1 .

The initial goal is now for the system to converge
to D, i.e., to align the velocity of the system with
the distribution and keep it aligned. Convergence
to the Qd can then be obtained by either choosing
the distribution to converge automatically (Li and
Horowitz, 1999), or by adding a suitably chosen
potential field (Duindam and Stramigioli, 2005).

3.1 Change of Coordinates

Before designing the controller, we first repre-
sent the system in different coordinates to be
able to separate desired motions (motion along
the distribution) from undesired motion (motion
perpendicular to the distribution). We keep the
same coordinates q for the position but replace
the momenta p by h(q)α, where α are the new
coordinates for the momentum and h(q) is struc-
tured as

h :=
[

hd hu

]

:=
[

(h1 · · · hm) (hm+1 · · · hn)
]

and satisfies the following properties:

(1) the matrix h(q) is invertible and varies
smoothly with q, i.e., it defines a proper
change of coordinates according to

p = h(q)α

α = h−1(q)p

1 This automatically implies that we will take a local
approach, since the topology of the configuration space as
well as the shape of the specified desired submanifold can
make it impossible to define such a distribution globally
(e.g. on S2n this is the famous ‘hairy-ball theorem’).



(2) the last n − m columns of h are orthogonal
to D, i.e. hT

u (q)D(q) = 0.
(3) the metric induced by M(q) and h(q) is

structured as

hT M−1h =

[

hT
d M−1hd 0

0 hT
u M−1hu

]

(4)

and is independent of q.

These properties basically mean that the first m

columns of h describe the desired motion along the
distribution D, that the last n − m columns of h

are orthogonal (in the metric M−1) to the first
m columns and describe the undesired motion,
and that all columns of h have constant norm and
relative angle (in M−1).

The energy of the system can now be expressed in
the new coordinates as

H̄(q, α) := H(q, hα) =
1

2
αT hT M−1hα + V

=
1

2
αT

d hT
d M−1hdαd +

1

2
αT

u hT
u M−1huαu + V

where αT =
[

αT
d αT

u

]

is split similarly to h. This
shows that the new coordinates separate the ki-
netic energy in the desired direction (depending
only on αd) from the kinetic energy in the unde-
sired direction (depending only on αu) and the
potential energy (depending on q).

Given a certain choice of h satisfying the criteria,
we can rewrite the dynamic equations in the new
coordinates as presented in the following theorem.

Theorem 1. A mechanical system defined by (2)
with coordinate transformation defined by h as
before can be written as
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where
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and H̄(q, α) = 1

2
αT hT (q)M−1(q)h(q)α + V (q).

PROOF. See (Duindam and Stramigioli, 2005).

Fig. 1 shows a schematic block diagram of the
plant in new coordinates (together with the con-
troller from the following section). The energy
has been split in a desired and an undesired part
and the block labeled ‘power-continuous intercon-
nection’ describes the possible flows of energy in

the system, as defined by J̄ and the input-output
mappings.

3.2 Power-Continuous Asymptotic Curve Tracking

We now propose a port-based controller that
makes the system move along integral curves of
the distribution D.

Theorem 2. Given the mechanical system (2) or
in transformed coordinates (5), define the follow-
ing sub-controllers (see also Fig. 1):
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• Energy storage:














d

dt
q̂ = ŷ
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• Decoupling controller:
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ỹu



 =





X hd hu

−hT
d 0 0

−hT
u 0 0









−ȳ
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with

X :=

(

∂hα

∂q
−

∂T hα

∂q

)

+ h

[

Sd 0
0 Su

]

hT (9)

where Sd and Su are arbitrary skew-symmetric
matrices of size m×m and (n−m)×(n−m),
respectively.

• Convergence controller:
[

ũd

ũu

]

=

[

0 −aỹdỹ
T
u

aỹuỹT
d 0

] [

−ỹd

−ỹu

]

(10)

If we furthermore choose V̂ (q) = −V (q) and
take initial conditions such that q̂(0) = q(0),
then the cascade port-interconnection of the sub-
controllers (6)–(10) to the plant results in asymp-
totic convergence to motion along D.

PROOF. We give a quick intuitive sketch of the
proof of the theorem; more details can be found
in (Duindam and Stramigioli, 2005).

First, it can be seen that, given the initial con-
dition that q̂(0) = q(0), q̂ is equal to q for all
t ≥ 0. By choosing the controller energy V̂ as
the negative of the system’s potential energy, the
effect of the potential energy is effectively canceled
out. This part of the controller is simply a version
of classical energy shaping.

Second, under the conditions above, we can write
the equations for the desired and undesired mo-
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ũu

ỹu
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û ŷ

u

y

∂H̄
∂αd

α̇d

q̇, α̇u

∂H̄
∂q

, ∂H̄
∂αu

Fig. 1. Block diagram representation of the interconnection of the complete controller with the plant.

menta for the plant interconnected to the sub-
controllers (6)–(8) as

α̇d = Sd

∂H̄

∂αd

α̇u = Su

∂H̄

∂αu

which shows how the term X in (9) has canceled
the original coupling between αd and αu. So
with these sub-controllers interconnected, both
the desired and undesired energy are conserved.
As an extra design freedom, the skew-symmetric
matrices Sd and Su can be chosen freely, for
example to minimize the required control torques.

Finally, the sub-controller (10) can be shown to
establish a unidirectional flow of energy from the
undesired part to the desired part until αu is
zero, i.e., until the system moves along the desired
distribution.

The interesting properties of the sub-controllers
can be seen from their formulation in port-
Hamiltonian form: sub-controllers (6), (8) and
(10) are power-continuous, meaning they only re-
distribute the energy; they do not dissipate, store,
or create energy in the system.

4. APPLICATION TO WALKING ROBOTS

4.1 Dynamic model of a compass-gait biped

We now show how to modify and apply the results
of Section 3 to the planar compass-gait biped
shown in Fig. 2. This biped is studied in detail
in (Goswami et al., 1997), and we use the same
parameters here.

We have modeled the biped as a port-Hamiltonian
system of the form (2) using coordinates q1

through q4 for the positions and another four
coordinates for the momenta. Impacts of the feet
with the ground are assumed to be instantaneous
and inelastic. This means that on impact, the mo-
mentum of the robot’s foot along the direction of
the vertical and horizontal ground forces is reset,

q1 q2

q3

q4

4o

g

Fig. 2. Schematic of the compass-gait biped.

causing an instantaneous loss of (some) kinetic en-
ergy. Then, during the contact phase, the ground
reaction forces are computed and applied to the
robot, provided that the required vertical force is
positive, i.e., the ground is pushing upward.

Although this model is suitable to model general
motions of the biped (including flight-phase), it is
useful to simplify the model for control purposes.
Namely, during normal walking with one foot on
the ground, and assuming the ground reaction
forces are positive, the biped can be modeled as a
two-link world-fixed mechanism. By using either
the coordinates q3 and q4 or the coordinates q3+q4

and −q4 (depending on which foot is on the floor),
a single dynamic model can be used for both
situations (since the biped is symmetric). We use
this reduced model to design the controller, and
we assume we can apply a control torque both at
the hip and at the ankle of the leg that is touching
the ground. This means that, under the conditions
that the reduced model is valid, we have a fully
actuated robot.

4.2 Nominal passive compass-gait walking

When the biped is placed on a shallow slope
(we chose a 4o slope) and given the right initial
conditions, it can walk stably downhill without
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Fig. 3. Nominal trajectory and desired vector field
for the compass-gait biped. The solid line
represents the stance phase, the dashed line
the swing phase.

actuation. This has been shown before both in
simulations and experiments, see e.g. (McGeer,
1990; Garcia et al., 1998; Goswami et al., 1997).
The biped gains energy from the gravitational
field, but looses energy due to the inelastic im-
pacts of the feet with the ground.

The gait of the biped (i.e., the cyclic motion of
some of its configuration variables) is represented
in Fig. 3 as a closed curve, consisting of a solid
part and a dashed part, each corresponding to one
leg being on the ground and the other swinging.
The transition between the two parts occurs when
the front leg touches the ground (causing a lift-
off of the rear leg): the instantaneous change of
momentum due to the impact can be seen in the
figure as a non-smoothness in the curve.

This gait is stable in the sense that for small
perturbations in the initial conditions, as well
as for small disturbances, the motion converges
to the same gait and the biped does not fall.
However, its region of attraction is quite small;
a slightly larger perturbation causes the biped to
fall over. This is shown in the top figure of Fig. 4:
the biped falls when walking down a small step.
Simulation showed that any drop larger than 0.5%
of the leg length results in the robot falling over.

4.3 Controlled passive compass-gait walking

In this section, we apply the results of Section 3
and design a port-based controller that enlarges
the region of attraction of the passive walker and
thus makes it more robust against disturbances.

Since we can only apply a control torque to the
ankle when the leg is touching the ground, we
design a control law for the stance phase of the leg
only. When the front leg touches the ground (and
simultaneously the rear leg lifts off), we switch

control to the other ankle and apply the same
control law symmetrically.

The control goal is to augment the existing passive
walking and not alter the basic behavior of the
robot, hence we take the nominal uncontrolled
trajectory as the desired trajectory and construct
a suitable vector field around it, as shown in
Fig. 3. The vectors of the field are tangent to the
nominal trajectory (during the stance phase) or
are directed along and towards it. For this simple
example, the vector field was generated by fitting
polynomial descriptions for the two components of
the vector field to several desired integral curves.

With this vector field chosen, we then apply the
control laws (6), (8), and (10). However, instead of
(7), we choose a different approach. The reason is
that the potential energy (gravity) in the system
is partially responsible for shaping the nominal
trajectory: to compensate for the potential energy
would make the trajectory unnatural and hence
would require extra control effort. So instead of
using (7), we only compensate for the potential
energy in the undesired directions, i.e., in the
directions along αu, or orthogonal to the vector
field:

û = hu

(

hT
u M−1hu

)

−1
hT

u M−1 ∂V

∂q
(11)

A disadvantage of this solution, however, is that
it is not passive. Therefore, we monitor the energy
injected to or removed from the system through
the port (û, ŷ) and apply an extra torque in
the desired direction of motion that dissipates or
injects this energy back in the system.

The resulting controller is a port-interconnection
of power-continuous sub-controllers, together with
the compensation for potential energy. When the
system is moving along the nominal trajectory,
it does not apply a control torque, but when it
deviates from the trajectory, the controller exerts
the required torques to get back to the nominal
trajectory. The performance is shown in the lower
figure of Fig. 4, where the biped can be seen to
successfully walk down a step: when the front leg
touches the ground at a lower point than before,
the controller quickly drives the rear leg forward
(towards the nominal trajectory) preventing the
biped from falling forward, which occurs in the
uncontrolled case.

Fig. 5 shows a plot of the various energies in-
volved in the system. The total energy can be
seen to be constant except during impacts (when
there is a jump) and when the control energy is
(temporarily) large, after the step down around
t = 6.5s. During nominal walking, potential and
desired kinetic energy are exchanged, while the
undesired kinetic energy and the control energy
stay low.
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Fig. 4. Stick diagrams of uncontrolled and con-
trolled walking down a step.
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Fig. 5. Energy plot of the controlled walk of Fig. 4.
The step down occurs around t = 6.5 s.

5. CONCLUSIONS AND FUTURE WORK

We described a general port-based technique of
modular controller design for fully actuated me-
chanical systems, and demonstrated how this
method can be used to increase the robustness
of a compass-gait passive bipedal robot against
unknown disturbances. The resulting controller
does not alter the nominal unactuated passive
gait of the biped, but provides corrective control
action when the biped deviates from the nominal
trajectory and thus prevents it from falling over.
We showed in simulation how, in this way, the
biped can walk down a step without falling over
like in the uncontrolled case.

In future work, we want to apply the same method
to more elaborate walking robots (e.g. having
knees or moving in three dimensions) and test the
method on experimental setups.

Furthermore, we want to extend the idea to time-
varying vector fields, where the vector field (and
the corresponding nominal trajectory) is opti-
mized for various walking speeds, slopes, foot
clearance, or other aspects of practical walking.
Depending on the higher-level task the robot has
to perform, the right vector field is chosen and the
lower-level controller then makes the robot move
along that vector field.

Finally, we want to study the trajectories them-
selves in order to be able to compute the ‘optimal’
trajectories for certain robots in certain situations
from scratch, without the need for simulation or
numerical searches for a stable limit cycle.
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