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Abstract: This paper proposes advanced visualization and interaction techniques
as a support for the analysis of system identification data. Non-linear or time-
dependent dynamics often leave a significant residual with linear, time-invariant
models. The structure of this residual is decisive for the subsequent modelling
and by visually analysing the data the modeller may gain a deeper insight into its
structure than can be gained using only standard correlation analysis. Copyright c©
2005 IFAC
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1. INTRODUCTION

System identification is inherently an interactive
art. Results from preliminary model building are
studied by the user. Based on such studies, de-
cisions about new model structures are taken.
The studies are typically of a visual nature, often
simple 2-dimensional line plots of correlation func-
tions and residuals. Visualization techniques have
gone through a significant development during the
past decade. It is an interesting problem to study
what such new techniques may offer in terms of
improved interaction in system identification.

The purpose of the present contribution is to give
some illustrations of how the system identification
process can be extended to include sophisticated
visualization and interaction techniques. The pa-
per describes how model validation can be aided
by the use of interactive 3-dimensional visual-
ization which allows for simultaneous analysis of
the dependencies between two variables and time.
The study is a result of joint activities between a

research group in system identification and one in
visualization.

1.1 LTI Models with Non-LTI Systems

Fitting a linear time-invariant (LTI) model to
data sampled from a system with nonlinear or
time-varying dynamics usually results in a large-
magnitude nonlinear or time-varying residual. Un-
less the modeller is aware from the beginning of
the nonlinear or time-variant nature of the system
dynamics, the cause of the large residual magni-
tude will, perhaps, not be evident. Correlation
and auto-correlation estimates may reveal that
something is wrong but give no clue to whether
the bad fit is due to wrong model order, nonlin-
earities or time-variant dynamics. At this point, it
is actually difficult to gain insight into the model
discrepancies.

Volume graphics, however, offers a means to go
beyond standard summary statistics measures for
model validation. By assigning each data point
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Fig. 1. Model validation. The output yt of the sys-
tem, here discrete, is compared to the output
of the model, ŷt. The difference between the
two makes the residual, et. If the residual is
dependent on the noise only, not on the input
ut, then there is nothing more to model.

to a semi-transparent volume in a 3-dimensional
spatial/temporal space, the modeller may explore
and interpret large-scale process data sets (104-
105 sample points).

The process of system identification (Ljung, 1999)
can be broken down into selection, estimation
and validation of the model. In the first selection
step, the task is to select an appropriate model
structure. The second step is to estimate model
parameters given data sampled from a system
and calculate the model residual – the part of
the output that is left unmodelled. The last step
is then to validate the model. If the residual is
satisfactory, nothing else needs to be done. If not,
another model structure needs to be tested and
the process starts over again. A satisfactory resid-
ual is, for instance, a residual small in magnitude
and independent of the model/system input.

Particularly in the model validation step, the
modeller needs diagnostics tools to support the
decision whether to accept the model or try some
other structure. At this stage the study of the
model residual and the dependency between the
residual and the input is decisive.

1.2 Visualization and Interaction Techniques

Being able to visualize data with multiple vi-
sualization techniques in multiple views can be
powerful when analysing complex data. Volume
graphics (Drebin et al., 1988) is one technique
for displaying volumetric data as a 2-dimensional
image. The volume data can, for example, be the
result of sampling an object in 3 dimensions. One
common application area of volume graphics is in
the medical imaging domain where, for example,
data can be constructed from the output of an
X-ray Computed Tomography (CT) scanner.

Visualization alone, however, is usually not enough
in order to fully understand the data. Of equal
importance are also correct preprocessing of the
data and the ability to interact and manipulate
with the resulting image. For data sets containing
long time-series, a focus + context visualization
(Doleisch et al., 2003) may be successfully used.
Using one view to display the entire time-sequence
(the context) and another view for displaying a
detailed sub-region (the focus) prevents the user
from getting lost in the data while analysing a
specific region.

1.3 Related Work

In recent years, there have been great efforts
made to visualize complex process data, for in-
stance by means of scatter plot matrices (Wong
and Bergeron, 1996) or by parallel coordinates
(Johansson et al., 2004). The applications have
mainly been in decision support (Kulhavý, 2003).
For the interested reader refer to (de Oliveira and
Levkowitz, 2003) for an overview of concepts and
taxonomies of visual data exploration.

2. MODEL VALIDATION

A linear discrete time-invariant state space model
is used: {

xt+1 = Axt + But

ŷt = Cxt.
(1)

Here, ut is the input signal (common to the system
and model), ŷt the simulated model output and
yt the sampled output signal of the system to
be identified. The model order, n, is the same
as the dimensionality of the state space vector
xt. Given n (design parameter), a set {ut, yt}N

1

with sampled data points and some assumption
of the initial state x0, techniques to estimate the
model parameters A,B,C are well-known (state-
space subspace system identification), see (van
Overschee and de Moor, 1996). Programs for this
task are available commercially, for example, the
System Identification Toolbox (Ljung, 2003) for
use with MATLAB.

Once the model parameters are estimated and ŷ
simulated according to (1), the model residual is
calculated as

et = yt − ŷt, t = 1, 2, . . . , N. (2)

If the model is a correct description of the sampled
system and the input is white noise, the residual
will depend only on some unknown noise process,
not on the input. In fact, if the residual is inde-
pendent of present and past inputs, nothing more
is left to be modelled and the process is complete.
Fig. 1. illustrates the signal paths.
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Fig. 2. A simple scatter plot showing samples
from two dependent but uncorrelated random
variables.

A standard measure of the dependence between
two scalar, zero-mean samples is the sample cross
covariance,

R̂eu(τ) =
1

N − τ

N−τ∑
t=1

et+τut. (3)

If some R̂eu(τ) is significantly larger than 0, this
indicates the model is not sufficient. Plotting {et}
against {ut+τ} in different 2-dimensional scatter
plots for τ = 0, 1, . . . may, however, reveal depen-
dencies not reflected by R̂eu at all. Fig. 2 illus-
trates this by plotting samples from two evidently
dependent random variables that are totally un-
correlated, R̂eu(0) = 0.

Non-linear dynamics are always difficult to ob-
serve and it is by no means trivial to find a
minimum number of variables that reveal the non-
linear nature of data. One approach is to search
for structure manually by selecting different time-
lags of the residual and input and try to visually
interpret them. A more systematic approach is
proposed in (Lindgren and Ljung, 2005), where
linear combinations of the different time-lagged
signals are sought by numerical programs. The
linear combinations found may then be visualized.

To also visualize time-varying dependencies it will
be necessary to use 3-dimensional graphics to
display et+τ , ut, and t. This gives rise to a number
of issues that will be addressed in the subsequent
sections.

3. IMPLEMENTATION

The application developed exploits the system
identification toolbox in MATLAB together with
a powerful object-oriented visualization system,
AVS/Express (AVS, 2004). This system is based
on individual modules and an application is built

Estimate model

MatlabAVS/Express

Browse for data

Calculate data statistics

Pre−process data

Choose model

Visualize data Data

Specify parameters

Read data from file

Flow of data

Control messages

    Steps in the analysis process

Fig. 3. The work flow between AVS/Express and
MATLAB.

by combining these through a visual network edi-
tor. MATLAB and AVS/Express have been seam-
lessly integrated through a common user interface
with which the user can interactively preprocess,
analyse and visualize data. The application has
also been extended from an ordinary desktop PC
to a much larger semi-immersive stereoscopic dis-
play. This type of visualization creates the psy-
chological illusion of immersion: of being inside
the computer-generated environment, rather than
viewing it from the outside through a screen.

3.1 Application Overview

A simplified work flow of the application is shown
in Fig. 3. The work flow begins with loading
data from a file into MATLABs workspace. The
user can choose to visualize the original data set
but can also perform a number of preprocessing
operations on the data. The next step in the
analysis process is to choose an appropriate model
structure and to perform the estimation. Through
the user interface, the user can look at a preview
of the estimation result in a 2-dimensional scatter
plot. This process is highly interactive so the
user can, at any time, go back and change the
parameters of the model to further improve the
result of the visualization. When the user has
identified an area of interest it can be visualized
using a volume graphics technique, see Fig. 6
and Fig. 7. To further investigate the data, a
cross-section for a particular time instant can be
displayed.

To manage the communication between MATLAB
and AVS/Express, a communication module has
been developed. This module handles all control
messages and the entire flow of data between the
two systems. Since system identification data may
be very large, the data is (as far as possible) han-
dled locally by MATLAB. It is only when the user
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Fig. 4. A subset of the 2-dimensional data is scaled
and aggregated. This is done for every subset
d, which gives a volume of size n×m× t

d .

explicitly requests data that it is transferred. Also,
it is only the selected subset that is sent, never the
entire data set. This makes the processing of very
large data sets much easier and the visualization
process highly interactive.

3.2 Interactive Volume Graphics

In the analysis process it is possible to perform
a volume graphics visualization of a selection of
variables. This 3-dimensional visualization tech-
nique effectively reveals any time-variations and
is an important part of the analysis process.

To make the volume graphics visualization inter-
active, the volume data needs to be recalculated
every time the user makes a change in the pa-
rameter settings. How quickly this can be done
primarily depends on the volume size but also on
the type of platform used. The calculation, de-
scribed below, and rendering of the visualization
of a 128×128×256 volume on a desktop PC can be
done with less than a second of delay. The size of
the volume can dynamically be changed to speed
up the calculation on a slower PC.

The volume data is build from a number of planes,
where each plane contains a subset with d of the
N data points, see Figure 4. The different planes
thus correspond to different time epochs of the
data set. Each plane is, in turn, divided into an a-
by-b grid of bins into which the data points are
aggregated. The aggregation simply counts the
data points that fall into the respective region
defined by the grid. This procedure is done for
every subset of d data points, which produces
a volume of size a × b × N

d . To make the data
points fall within the predefined grid they are first
scaled and translated so that they all have values
between 0 and 1. This procedure is done for every
subset, which produces a volume of size m×n× t

d .

Fig. 5. The application running on a semi-
immersive display.

4. RESULTS

Volume graphics provides the modeller with use-
ful insight into the structure of data sampled
from a time-varying system. The residual of an
LTI state space model has been combined with
the model input and time to construct a spa-
tial/temporal 3-dimensional volume. Integrating
this 3-dimensional volume visualization with sev-
eral 2-dimensional visualizations creates an inter-
active platform for exploratory analysis of such
data. The understanding and experience gained
from interacting with data through this platform
has proven to be a valuable tool in the system
identification process.

The results of extending the visualization from
a desktop PC to a much larger, semi-immersive,
stereoscopic display have so far been promising.
An example of this is shown in Fig. 5. The data
comes from a simulated linear feedback system
with variable feedback gain. The 2-dimensional
scatter plot in the upper left view shows the re-
lationship between ut and et. This gives a quick
overview of the data and it can be seen that there
seems to be two or more separate regions but
there is no information about where in time these
regions are. Visualizing the same variables using
a volume graphics visualization (right view) gives
the necessary temporal information. To further in-
vestigate the relationship between these variables,
the cross-section from the clip plane is displayed
in the lower left view. The plane can also be
animated through the entire time sequence.

Fig. 6 shows the use of interactive volume graphics
where time-varying dynamics is detected. This
is the same data as in Fig. 5 but with slightly
different settings. Here it is clearly seen that the
system dynamics is divided into four separate
temporal regions. The axes in Fig. 6 are time, t,
model input, ut, and the residual, et.

In Fig. 7 another important discrepancy of a
model is detected, namely non-linear dynamics.
The (real-life) silver data is sampled from an
electronic circuit. This data set has been studied
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Fig. 6. Volume graphics visualization of time-varying dynamics. A linear time-varying data set seen from
three different angles (a,b,c). The three axes are time, t, input, ut, and residual, et.
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Fig. 7. Volume graphics visualization of non-linear dynamics. Three different angles (a,b,c) of the silver
data. The axes represent time, t, output, yt, and a particular linear combination of time lagged
versions of the input and output.

before, see (NOLCOS, 2004) and in theory it
obeys the non-linear differential equation

m
d2y(t)

dt
+ d

dy(t)
dt

+ ay(t) + by(t)3 = u(t). (4)

The sampling interval is 0.0016384s. The axes in
Fig. 7 represent time, t, output, yt, and a par-
ticular linear combination of time lagged versions
of the input and output. This linear combina-
tion is found by an optimisation program. The
criteria for the optimisation is how well a third-
order polynomial fits the data for different linear
combinations, see (Lindgren and Ljung, 2005).

For the modeller it is is necessary to get insight of
both time-variations and non-linearities in order
to proceed to develop more adequate models.

Colour versions of the figures presented in this
section can be found at (Colour, 2005).

5. CONCLUSIONS

Advanced visualization techniques as a support
for system identification have a great potential
and the understanding and experience gained
from interacting with data through our applica-
tion has proven to be a valuable tool. Future plans
and ideas include completion of the platform with
additional model structures: for instance non-
linear Wiener-Hammerstein models and adaptive
time-variant models.

Further study on non-linear dynamics and how
volume graphics and projection techniques can
facilitate the pursuit of adequate model structures
are also interesting.

Finally, merging the interactive volume graphics
with projection based methods known from the
area of exploratory data analysis may provide new
insights into the process of model validation.
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