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Abstract: In this paper a new class of globally stable controllers for robot
manipulators is proposed. The global asymptotic stabilization is achieved by
adding a nonlinear damping term to linear PID controller. By using Lyapunov’s
direct method and LaSalle’s invariance principle, explicit conditions on controller
parameters which ensure global asymptotic stability are obtained. Further, the
Lyapunov function is employed for evaluation of the performance index and
determination of the optimal values of controller parameters. Finally, an example
is given to demonstrate the obtained results.Copyright c©2005 IFAC
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1. INTRODUCTION

The most industrial robots are controlled by lin-
ear PID controllers which does not require any
component of robot dynamics into its control
law. A simple linear and decoupled PID feedback
controller with appropriate control gains achieves
desired position without any steady-state error.
This is the main reason why PID controllers are
still used in industrial robots. However, a linear
PID controller in closed loop with a robot manip-
ulator guarantees only local asymptotic stability
(Arimoto and Miyazaki, 1986; Kelly, 1995).

The first nonlinear PID controller which ensures
global asymptotic stability (GAS) in closed loop
with a robot manipulator is proposed in (Kelly,
1993). In this work, which was inspired by results
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of Tomei (Tomei, 1991), is proven that global
convergence is still preserved if regressor matrix
is replaced by constant matrix. Since the regres-
sor matrix is constant, the control law can be
interpreted as a nonlinear PID controller which
achieve GAS by normalization nonlinearities in
the integrator term of control law. Second ap-
proach to achieves GAS is the scheme of Arimoto
(Arimoto, 1994) that uses a saturation function
in the integrator to render the system globally
asymptotically stable, just as the normalization
did in (Kelly, 1993). A unified approach to both
above controllers, which belong to the class of
PD plus a nonlinear integral action (PD+NI) con-
trollers, is given in (Kelly, 1998).

An alternative approach to global asymptotic sta-
bilization of robot manipulator is ”delayed PID”
(PIdD) (Loria et al., 2000). PIdD can be under-
stood as a simple PD controller to which an inte-
gral action is added after some transient of time.



The idea of this approach consists of ”patching” a
global and a local controller. The first drives the
solutions to an arbitrarily small domain, while the
second, yields local asymptotic stability.

Although the stability properties of globally sta-
bile controllers for robot manipulators are well un-
derstood, there are no many results regarding to
optimality and performance tuning rules, except
of H∞ optimality (Nakayama and Arimoto, 1996).

In this paper a new approach to GAS of robot
manipulators is presented. In this approach GAS
is achieved by adding a nonlinear damping term
to linear PID controller. Explicit conditions on
controller parameters which guarantee GAS are
given.

Also, a performance index is evaluated using the
Lyapunov function and optimal values of the pa-
rameters are obtained. The proposed approach is
based on construction of a parameter dependent
Lyapunov function. With the appropriate choice
of the free parameter, which is not included in
stability conditions, an estimation of the integral
performance index is obtained. The performance
index depends on controller parameters and few
parameters which characterize the robot dynam-
ics. The optimal values of the controller gains
are obtained by minimization of the performance
index.

This paper is organized as follows. The system
description is presented in Section 2. The stability
criterion based on the Lyapunov’s approach is
derived in Section 3. The performance tuning is
presented in Section 4. In Section 5, an example
is given to demonstrate results. Finally, the con-
cluding remarks are emphasized in Section 6.

2. SYSTEM DESCRIPTION

We consider a robot manipulator with n-degree
of freedom in closed loop with a nonlinear PID
controller.

2.1 Dynamics of Rigid Robot

The model of n-link rigid-body robotic manipula-
tor, in the absence of friction and disturbances, is
represented by

M(q)q̈ + C(q, q̇)q̇ + g(q) = u, (1)

where q is the n × 1 vector of robot joint coordi-
nates, q̇ is the n× 1 vector of joint velocities, u is
the n× 1 vector of applied joint torques, M(q) is
n × n inertia matrix, C(q, q̇)q̇ is the n × 1 vector
of centrifugal and Coriolis torques, and g(q) is the

n × 1 vector of gravitational torques obtained as
the gradient of the robot potential energy U(q)

g(q) =
∂U(q)

∂q
. (2)

The following well known properties of the robot
dynamics, (Arimoto, 1997; de Wit et al., 1996),
are important for stability analysis.

Property 1. The inertia matrix M(q) is a positive
definite symmetric matrix which satisfies

λm{M}‖q̇‖2 ≤ q̇T M(q)q̇ ≤ λM{M}‖q̇‖2, (3)

where λm{M} and λM{M} denotes strictly posi-
tive minimum and maximum eigenvalues of M(q),
respectively.

Property 2. The matrix S(q, q̇) = Ṁ(q)− 2C(q, q̇)
is skew-symmetric, i.e.,

zT S(q, q̇)z = 0, ∀z ∈ Rn. (4)

This implies

Ṁ(q) = C(q, q̇) + C(q, q̇)T . (5)

Property 3. The Coriolis and centrifugal terms
C(q, q̇)q̇ satisfies

‖C(q, q̇)q̇‖ ≤ kc‖q̇‖2, (6)

for some bounded constant kc > 0.

Property 4. There exists some positive constant kg

such that gravity vector satisfies

‖g(x)− g(y)‖ ≤ kg‖x− y‖, ∀ x, y ∈ Rn. (7)

Property 5. There exist positive diagonal matrix
KP such that the following two inequalities with
specified constant k1 > 0 are satisfied simultane-
ously

q̃T KP q̃ + q̃T (g(q)− g(qd)) ≥ k1‖q̃‖2, (8)

1
2
q̃T KP q̃ + Ū(q̃) ≥ 1

2
k1‖q̃‖2, (9)

where

Ū(q̃) = U(q)− U(qd)− q̃T g(qd), (10)

k1 = λm{KP } − kg ≥ 0. (11)

2.2 Nonlinear PID Controller

The nonlinear PID control law is given by

u =−ΨP (q̃)q̃ −ΨD(q̃)q̇ −KIν, (12)

ν̇ = q̃, (13)

where q̃ = q − qd is joint position error, Ψj(q̃),
j = P, D, are (n × n) positive definite diagonal



matrix functions which can be written in next
form

Ψj(q̃) = Kj + K̄jΨ̄j(q̃), (14)

where KP , KD, KI , K̄P and K̄D are constant
positive-definite diagonal matrix, and Ψ̄j(q̃), j =
P, D, are (n×n) positive definite diagonal matrix
function

Ψ̄j(q̃) = diag{ψ̄j(q̃1), ..., ψ̄j(q̃n)}. (15)

The function ΨD(q̃) will be determined to ensure
global asymptotic stability, and function ΨP (q̃)
will be used for performance tuning. The function
Ψ̄P (q̃) satisfies additional conditions

0 ≤ Ψ̄P (q̃) ≤ I, Ψ̄P (0) = I, lim
q̃→±∞

Ψ̄P (q̃) = 0,

that prevent high control jump during the tran-
sient response, because of large error at the begin-
ning of control action, u(0) ≈ −KP q̃(0) = KP qd.

The following properties of functions Ψj(q̃), j =
P, D, are important for stability analysis.

Property 1. Functions Ψj(q̃), j = P, D, are lower
bounded and satisfy next inequalities

zT Ψj(q̃)z ≥ (λm{Kj}+ λm{K̄j}‖ψ̄j(q̃)‖)‖z‖2 ≥
≥ λm{Kj}‖z‖2, ∀z ∈ Rn. (16)

Property 2. The following integrals are positive-
definite functions

z∫

0

ψ̄Di(ξ)ξdξ ≥ 0, ∀z ∈ R, (17)

0 ≤
z∫

0

ψ̄Pi(ξ)ξdξ ≤ 1
2
z2, ∀z ∈ R. (18)

for i = 1, ..., n.

3. STABILITY ANALYSIS

The stability analysis is based on Lyapunov’s di-
rect method, and can be divided in four parts.
First, error equations for closed loop system (1),
(12), (13) is determined. Second, Lyapunov func-
tion (LF) candidate is proposed. Then, a global
stability criterion on system parameters is es-
tablished to guarantee the asymptotic stability.
Finally, LaSalle invariance principle is invoked to
guarantee the asymptotic stability.

The stationary state of the system (1), (12), (13)
is q̃ = 0, q̇ = 0, ν = ν∗, and ν∗ satisfies g(qd) =
−KIν

∗. If a new variable z = ν−ν∗ is introduced,
then system (1), (12), (13) becomes

M(q)q̈ + C(q, q̇)q̇ + g(q)− g(qd) = u, (19)

u = −ΨP (q̃)q̃ −ΨD(q̃)q̇ −KIz, (20)

ż = q̃. (21)

3.1 Construction of Lyapunov function

First, an output variable y = q̇+αq̃ with some α >
0 is introduced, and inner product between (19)
and y is made, resulting in a nonlinear differential
form which can be separated in the following way

dV (q̃, q̇, z)
dt

= −W (q̃, q̇), (22)

where V (q̃, q̇, z) is Lyapunov function candidate.

For easier determination of conditions for positive-
definiteness of function V and W , the following
decompositions are made: V (q̃, q̇, z) = V1(q̃, q̇) +
V2(q̃, z) and W (q̃, q̇) = W1(q̃, q̇) + W2(q̃), where

V1(q̃, q̇) =
1
2
q̇T M(q)q̇ + α

n∑

i=1

K̄Di

q̃i∫

0

ψ̄Di(ξ)ξdξ +

+
1
2
αq̃T KD q̃ + αq̃T M(q)q̇, (23)

V2(q̃, z) =
1
2
αzT KIz + q̃T KIz +

1
2
q̃T KP q̃ +

+
n∑

i=1

K̄Pi

q̃i∫

0

ψ̄Pi(ξ)ξdξ +

+ U(q)− U(qd)− q̃T g(qd), (24)

and

W1(q̃, q̇) =−αq̇T M(q)q̇ + q̇T ΨD(q̃)q̇ +

+ αq̃T (Ṁ(q)− C(q, q̇))q̇, (25)

W2(q̃) =−q̃T (KI − αΨP (q̃))q̃ + (26)

+ αq̃T (g(q)− g(qd)). (27)

3.2 Stability criterion determination

First, we consider function V1 which can be rear-
ranged to be of the form

V1 =
1
2

(q̇ + αq̃)T
M(q) (q̇ + αq̃)− 1

2
α2q̃T M(q)q̃ +

+
1
2
αq̃T KD q̃ + α

n∑

i=1

K̄Di

q̃i∫

0

ψ̄Di(ξ)ξdξ, (28)

and using properties (16) and (3) we get

V1 ≥ 1
2
α(λm{KD} − αλM{M})‖q̃‖2 ≥ 0,(29)



that is positive-definite if the following condition
is satisfied

λm{KD}
λM{M} > α. (30)

Further, we consider function V2 which can be
rearranged to be of the form

V2 =
1
2

(√
αz +

1√
α

q̃

)T

KI

(√
αz +

1√
α

q̃

)
+

+
1
2
q̃T KP q̃ + U(q)− U(qd)− q̃T g(qd) +

+
n∑

i=1

K̄Pi

q̃i∫

0

ψ̄Pi(ξ)ξdξ − 1
2α

q̃T KI q̃. (31)

If we apply properties (9) and (16) than

V2 ≥ 1
2

(
k1 − 1

α
λM{KI}

)
‖q̃‖2, (32)

that is positive-definite if the following condition
is satisfied

α >
λM{KI}

k1
. (33)

Comparing (33) with (30) we obtain

k1λm{KD} > λM{KI}λM{M}. (34)

Note that in above condition the unspecified pos-
itive constant α is eliminated.

The following step is condition which ensure that
time derivative of LF is negative definite function,
i.e., W ≥ 0. First, we consider function W1.
Applying properties (3), (5), (6) and (16) we get

W1 ≥ (λm{KD}+ λm{K̄D}‖ψ̄D(q̃)‖)‖q̇‖2 −
− αλM{M}‖q̇‖2 − αkc‖q̃‖‖q̇‖2 ≥ 0, (35)

that is positive-definite if the following condition
is satisfied

λm{KD}+ λm{K̄D}‖ψ̄D(q̃)‖
λM{M}+ kc‖q̃‖ > α. (36)

Further, we consider function W2. Using property
(8) we get

W2 ≥ (αk1 − λM{KI})‖q̃‖2, (37)

that is positive-definite if we have

α >
λM{KI}

k1
. (38)

Comparing (36) with (38) the following condition
is obtained

λm{KD}+ λm{K̄D}‖ψ̄D(q̃)‖
λM{M}+ kc‖q̃‖ >

λM{KI}
k1

.

Also, in above condition the unspecified positive
constant α is eliminated. The above condition can
be rearranged such that includes condition (34),

k1λm{K̄D}‖ψ̄D(q̃)‖ − kcλM{KI}‖q̃‖+ SM > 0,

SM = k1λm{KD} − λM{KI}λM{M} > 0. (39)

The global asymptotic stability will be guarantied
if conditions (39) are satisfied for all q̃ ∈ Rn.

This conditions can be satisfied for different
choices of the function ψ̄D(q̃). We will consider
the most simple form of function ψ̄Di(q̃i) which
satisfies the conditions (39).

If we make the following choice

ψ̄Di(q̃i) = |q̃i| = q̃isign(q̃i), (40)

condition (39) will become

(k1λm{K̄D} − kcλM{KI})‖q̃‖+ SM > 0, (41)

SM = k1λm{KD} − λM{KI}λM{M} > 0, (42)

that will be satisfied when

λm{K̄D}>
kcλM{KI}

k1
, (43)

λm{KD}>
λM{M}λM{KI}

k1
. (44)

Further, the following choice

λm{K̄D} =
kcλm{KD}
λM{M} , (45)

will satisfied condition (43).

4. PERFORMANCE TUNING

The Lyapunov function V and its time derivative
V̇ = −W contain free parameter α > 0 that is
not included in stability condition. This fact can
be employed for the evaluation of the following
performance index

I = I1 + τ2I2 =

∞∫

0

‖q̃‖2dt + τ2

∞∫

0

‖q̇‖2dt,(46)

with respect to λm{KD} and λM{KI}, where
the constant τ2 is the weighting factor. Also, in
this section, because of compactness, the following
shortened notation is introduced
kjm = λm{Kj}, kjM = λM{Kj}, k̄jm =
λm{K̄j}, k̄jM = λM{K̄j}, m̄ = λM{M},

µj =
λM{Kj}
λm{Kj} , µ̄j =

λM{K̄j}
λm{K̄j}

, (47)

where j = P, I,D and wp = 1
p‖qd‖p

p, p = 2, 3.



The performance index (46) can be evaluated
using Lyapunov function (23), (24) and their time
derivative. From the equation (22) we can get

V (0) =

∞∫

0

W (q̃(s), q̇(s))ds, (48)

where we used V (∞) = 0. Putting (35) and (37)
in (48) we get

V (0)≥ (kDm − αm̄)I2 + (αk1 − kIM )I1 +

+ (k̄Dm − αkc)

∞∫

0

‖q̃‖‖q̇‖2dt. (49)

The third term on the right side of above expres-
sion is positive, k̄Dm − αkc > k̄Dm − kIM

k1
kc > 0,

where we used (38) and (43), so that

V (0) ≥ (kDm − αm̄)I2 + (αk1 − kIM )I1.(50)

The following step is estimation of upper bounds
on V(0). We have q̃(0) = −qd, q̇(0) = 0, z(0) =
−ν∗ = K−1

I g(qd), so that V (0) satisfies the fol-
lowing expression

V (0) = U(0)− U(qd) +
1
2
qT
d KP qd +

+
1
2
αqT

d KDqd +
1
2
αg(qd)T K−1

I g(qd) +

+
n∑

i=1

K̄Pi

−qdi∫

0

ψ̄Pi(ξ)ξdξ +

+ α

n∑

i=1

K̄Di

−qdi∫

0

ψ̄Di(ξ)ξdξ. (51)

So, we can estimate upper bounds

V (0)≤ 1
2
(kPM + k̄PM + αkDM )‖qd‖2 +

+
1
2
αk−1

IM‖g(qd)‖2 +
1
3
αk̄DM‖qd‖33. (52)

Because of (7) and λM{K−1
I } = 1/λm{KI} we

have

V (0)≤w2

[
kPM + k̄PM + α

(
kDM +

k2
g

kIm

)]
+

+ w3αk̄DM . (53)

Finally, comparing (50) and (53) we have

(kDm − αm̄)I2 + (αk1 − kIM )I1 ≤ w3αk̄DM +

+w2

[
kPM + k̄PM + α

(
kDM +

k2
g

kIm

)]
. (54)

From above mentioned expression we can get
integral terms I1 and I2 on the following way. If
we put α → (kDm/m̄)− in expression (54) we get

I1 ≤ w3

SM
kDmk̄DM +

w2

SM
(kPM + k̄PM )m̄ +

+
w2

SM

(
kDM +

k2
g

kIm

)
kDm. (55)

Similarly, if we put α → (kIM/k1)+ in expression
(54) then

I2 ≤ w3

SM
kIM k̄DM +

w2

SM
(kPM + k̄PM )k1 +

+
w2

SM

(
kDM +

k2
g

kIm

)
kIM . (56)

Finally, if we put expressions (55) and (56) in (46)
including (45) and (47) we get

I ≤ Î =
1

SM
(k∗P + A(k2

Dm + τ2kDmkIM )) +

+
B

SM

(
kDm

kIM
+ τ2

)
, (57)

where Î is the estimation of the upper bounds of
the performance index (46), and

A = w2µD + w3kcm̄
−1, B = w2µIk

2
g ,

k∗P = w2(m̄ + τ2k1)(kPM + k̄PM ).

Expression (57) can be employed to find the
optimal values of the controller gains

∂Î

∂kDm
= 0,

∂Î

∂kIM
= 0. (58)

The solution of above set of equation is the
following set of polynomial equation regarding to
variables kDm and kIM

aDk2
Dm − bDkDm − cD = 0, (59)

aIk
2
IM + bIkIM − cI = 0, (60)

where aD = k1A, bD = 2m̄AkIM , bI = 2m̄BkDm,
cI = k1Bk2

Dm, and

cD = m̄(Aτ2k2
IM + B) + k1(k∗P + Bτ2),

aI = m̄(k∗P + Bτ2) + A(m̄ + k1τ
2)k2

Dm.

We can rewrite the above set equations on the
following way

kDm =
1

2aD

(
bD +

√
b2
D + 4aDcD

)
, (61)

kIM =
1

2aI

(
−bI +

√
b2
I + 4aIcI

)
. (62)

On this way, we guarantee positivity of the
parameters kDm, kIM for any value of coefficients
in expressions (59) and (60). The solution of above
set of nonlinear algebraic equations can be found
by applying simple iterative procedure.
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Fig. 1. The transient response for positions and
control torque for KP = diag{600}, K̄P =
diag{0} and for the optimal values KD =
diag{53.1} and KI = diag{492.7}.

A possible choice for the nonlinear proportional
gain is

ψPi(q̃i) = KPi + K̄Pi exp(− q̃2
i

2σP
). (63)

In this way, we ensure high proportional gain
ΨP (q̃) ≈ KP + K̄P , when the system state is
near the stationary state, q̃ ≈ 0, preventing a
large overshoot in the transient response. On the
other side, for large error, q̃ ≈ −qd, we have small
gain ΨP (q̃) ≈ KP , what prevent high control
jump during the transient response. The param-
eter σP defines a bandwidth around stationary
state q̃i = 0 with high proportional gains influ-
ence. So, the maximal value of proportional gain
KP is determined by the maximal allowed control
variable umax, kPM ≤ |umax/qd,max|, where qd,max

is the maximal value of qd.

5. SIMULATION EXAMPLE

The manipulator used for simulation is a two
revolute jointed robot (planar elbow manipulator)
with numerical values of robot parameters which
have been taken from (Kelly, 1995).

In Fig. 1-2 we can see comparison between con-
troller with K̄P = 0 and controller with K̄P 6=
0. To make the comparison fair, the value of
λM{ΨP (q̃)} will be same in both cases. We can
see that for almost same quality of the transient
response, controller in Fig. 2. has not a high jump
of the control variable which can be seen for the
controller in Fig. 1.

6. CONCLUSION

In this paper has been presented a new class of
globally stable controllers for robot manipulators.
Also, a new approach to performance tuning is
proposed which provide fast transient response
without oscillations and large overshoots, over-
coming undesirable effect of high control jumps
which is characteristic for conventional linear PID
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Fig. 2. The transient response for positions and
control torque for KP = diag{150}, K̄P =
diag{450} and for the optimal values KD =
diag{35.9} and KI = diag{265.3}.

controllers. The performance tuning rule involve
only few parameters which characterize the robot
dynamics.
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