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Abstract: Detecting the physiological mode of microorganism during a culture may 
allow to better handle behaviour modifications that can affect the productivity. This 
paper proposes a new sequential method that utilises a classification of the directions 
that generate the subspace orthogonal to the pre-processed measurements. Existence of 
the orthogonal subspace and the nature of pre-processing are derived from theoretical 
modelling of the culture. An application to a Saccharomyces Cerevisae culture shows 
the ability to well isolate main phases of the process. Copyright © 2005 IFAC 
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1. INTRODUCTION  

This paper deals with the monitoring of cultures that 
involve a single strain of microorganism. The 
biological reactions that act in this process include 
microbial growth, maintenance and production 
reactions (Bastin and Dochain, 1990). In these types 
of reaction, substrates are consumed and are 
transformed either into biomass or into products. 
Modelling of biological process is for a long time the 
purpose of many studies. Its interest comes from the 
necessity of acquiring information about the 
behaviour of microorganism during the cultivation to 
better understand its dynamics. In another hand, it 
intends to predict some information as 
microorganism or substrate concentration. 

In most of the proposed methods, one assumption is 
made about the set of reactions that is actually acting 
at each instant and an activation function has to be 

set for each reaction. On the contrary, in (Cassar et 
al.2004, Cassar and Guillou 2004) basic reactions 
and physiological states are first defined from a 
dynamical model introducing yield matrix 
coefficients already introduced in  (Bastin and 
Dochain, 1990, Chen and Bastin, 1996). A set of 
relations to be verified by the measured indicators is 
associated with each physiological state. The 
monitoring purpose is then to detect the changes 
from one state to other one.  

The proposed approach aims at establishing a link 
between such a dynamical modelling of fermentation 
process and data analysis techniques. Data analysis 
techniques have been widely used for monitoring 
processes – see (Kourti and MacGregor, 1995) for a 
good review. A fuzzy classification procedure is 
utilised in (Waisman, 2000) to identify the current 
physiological state from the processing of the whole 
measurements set. In a similar approach (Cassar and 



    

Guillou, 2004), a hierarchical classification is applied 
using PCA projections to better distinguish the 
different modes. 

The limits of such approaches rests on the fact that 
the weight of one mode depends on its relative points 
number. So sequential methods have to be used to 
better distinguish short lasting events. 
Stephanopoulos (and al. 1997) proposed a pattern 
recognition approach that is performed after signals 
decomposition into symbols. In this paper, a 
multivirate signal decomposition is performed by 
using projections derived from application of PCA 
techniques on sliding time windows. 
An example, using the well-known yeast 
Saccharomyces Cerevisiae fermentation, is used to 
illustrate all the concepts that are developed in this 
paper. In a first part, the modelling of the culture 
process is introduced to define from measurements 
which data must be used by PCA techniques. The 
second part introduces the principle of PCA methods 
and establishes the link with the models. A sequential 
data analysis is proposed to classify the 
measurements into different states. The last part 
presents and discusses the results obtained from a 
batch culture of Saccharomyces Cerevisiae. The 
conclusion exhibits the interests and the perspectives 
of this work. 

2. PHYSIOLOGICAL MOTIVATIONS. 

2.1. Fermentation process modelling 

The fermentation in a bioreactor involves products 
and microorganisms. Regarding the evolution of 
product concentrations in the liquid phase and 
microbial growth, the dynamic model rests on the 
balance equations that are applied on each product 
present in the liquid phase. Thus, fermentation 
processes are usually described by dynamical model 
(1) (Bastin and Dochain, 1990):  

 ( ) ( )*d
D .

dt
= − + + +ξ ξ F Q ξ K r ξ  (1) 

The pn dynamical state vector ξ  is the concentration 

vector of products, included ions H+, involved in the 

reactions. In this model, the matrix *
ijk =  K  is the 

yield coefficient matrix that expresses the 
stoichiometry of the reactions involved by the 
culture. By convention negative yield coefficients are 
associated with substrates in the reaction while 
positive ones are associated with product. A zeroed 
value indicates the component is not involved in the 
reaction. F  and ( )ξQ are respectively the input 

flows relative to the volume for the liquid and for the 
gas. The notation ( )Q ξ  expresses here the influence 

of the value of the continuous state vector ξ  on flow 

exchange rate between the gas the liquid phase. The 

evolutions of the production or consumption rates 

( )r ξ  are also functions of this vector. 

As a batch process is considered in this study, the 
fact of neglecting the influence of the basic flow on 
volume makes it possible to cancel the dilution term 
D. The term F only concerns the base flow used to 
regulate the pH value. Relation (1) is then broken up 
into two relations according to the gas or liquid mass 
balances.   
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2.2. Measurements 

In relation (2), some terms are measured. Measured 

pH-value allows calculating H+ 
 

-concentration. 

Gas consumption [ ]2O
d and production [ ]2COd  are 

measured too. Base flow rate is governed by pH 
control. It provides information on ions flow rates 

Hd +  
 and 

4NHd +  
. In the following relations, 1C  

and 2C  are appropriated selection matrices and 

measurement are written as: 
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The introduction of measurements (3) into model (2) 
leads to the following formulation with respect to the 
measured species. 
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As  
 

+

4
NH  and gas concentrations are not measured, 

relations (4).b and (5).c can only be used if their 
derivatives are supposed to be equal to zero. That is 

mostly verified for gas, and supposes that 4NH+ 
 

 is 

completely consumed by the growth of biomass. In 
this case, (4) can be written as:  
 ( )ξ=y Kr  (5) 



    

[ ]

T
H T

L L G

T
3 1 L 2 1 L G

dy
with y y  

dt

and 

+  
  
  = − + −
   

  

=

y y

K C C K C C K K

 

2.3. Physiological modes 

In relation (5), ( )ξr  expresses all the biochemical 

reactions that can act during the fermentation. In 
(Cassar and al., 2004), we propose a writing of these 
reactions such that a way that each K -column can be 
uniquely defined from the stoichiometry matrix of 
the involved products. Only a subset of these 
reactions is active at a given time. This subset is 
induced by the physiological mode of the strain. In 
the sequel of this paper, the physiological mode I is 
formally defined by the corresponding set of 

reactions (I)r .  

At a given time k, relation (5) becomes:  

 (I) (I)
k k( )ξ= −y K r  (6) 

where (I)K  contains the K -columns associated with 
the active reaction of the biological mode I. 

In this study, a Saccharomyces Cerevisae strain is 
considered. Nine basic biochemical reactions that 
involve glucose, ethanol and acetic acid as main 
products are given in (Cassar and Guillou, 2004). 
They combination leads to nine physiological modes 
according to the available substrates.  

In (Cassar and al., 2004), it is shown how biological 
modes can be associated with different sets of 
relations between the available indicators. In the 
sequel of this paper, we are interested in finding 
intervals of time during which that relations may be 
verified.  

3. METHOD PRÉSENTATION 

3.1. Objectives 

If the microorganism is supposed to be in a given 
physiological state, then the y -vector components 

are generated from the reaction rates by a linear 

combination expressed by the (I)K -matrix in relation 
(6). They are thus linked by a linear combination that 
doesn’t change while the microorganism remains in 
the same physiological state.  

If a single physiological mode is considered to be 
active in a given time window, relation (6) can be 
written as:  

 
(I)

i i i= +Y K R E  (7) 

[ ] [ ]i n
i k i i 1 i ni

+
+ += =Y y y y y…  gathers the 

ky  -vectors. Ri is built in the same way with the 

reaction rates (I)r  and Ei contains the stochastic 
components that have to bee introduced into the 
model.  

The first objective aims at determining the (I)r -
vectors dimension – i. e. the number of active 
reactions - that defines the dimension of the sub-
space spanned by the ky -vectors. 

The second objective is the decomposition of the 
available data iY  into two terms: the matrix that 

expresses the linear combination (I)K  and the 
reactions rate signals iR . However, this 

decomposition is not unique as shown in (Liao and 
al., 2003). Indeed, relation (7) can always be written 
as: 

 
(I) (I)

i i i'= =K R K U UR AF  (8) 

U is an orthogonal matrix such that ' =U U I , A and 
F are an alternate decomposition of the signals Y. 

However, let W be a matrix left orthogonal to (I)K . 
This matrix is also orthogonal to A and doesn’t thus 

depend on the decomposition. The changes in (I)K  
can be checked as a change of the orthogonal space 
generated by W. A segmentation of the Y-signal is 
now to be found where each segment corresponds to 
a different orthogonal subspace. Providing a time 
segmentation based on this segmentation that can be 
interpreted as sequence of physiological states 
constitutes the third objective of our study that.   

3.2. Orthogonal subspace dimension determination. 

A time window i is characterised by the dimension of 
the Yi orthogonal sub-space and by the base that 
generates this sub-space. These both data are 
provided by a PCA analysis. The number of 
eigenvalues of i i'Y Y  that can be considered as near 

from zero gives the orthogonal sub-space dimension. 
The base of the orthogonal subspace is given by the 
corresponding eigenvectors. 

Let λ  be the eigenvalue associated to an eigenvector 

w. ( )2ˆ
n 1

λ
σ =

−
 estimates the value of the i'w Y  

component variance. An eigenvalue will be 
considered as close to zero if this estimated variance 
doesn’t differ in a significant way from the expected 
variance deduced from the stochastic term iE . This 

expected value is not a priori known. The proposed 
approach estimates it by the error variance of a 
polynomial curve fitting applied on the time window.  

Let the hypothesis H0 indicates the model (7) holds.  
Then the expected eigenvalues are defined as:  

 
( )2 'σ = w E  (9) 

 



    

Figure 1: On line measurement (time in hours) 

Let H1 be the hypothesis the model (7) does not hold. 
Supposing the stochastic terms follow a Laplace 
Gauss distribution, the Fisher’s test is used to 
distinguish the hypotheses:  
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Whether the H1 hypothesis is chosen, then w-vector 
can not be considered to be orthogonal to the 
available data. The number of eigenvalues that match 
the H0 hypothesis then gives the dimension of the 
orthogonal subspace.  

3.3. Classifying the eigenvectors directions. 

As PCA that provides the eigenvectors is performed 
independently on each time window, the eigenvectors 
may express different directions while the generated 
orthogonal subspace remains the same. Let iW  be 

the matrix of eigenvectors that generates the 
orthogonal subspace on the actual time window.  

Each subspace is linked with a base (I)W . It has to 
be checked whether one or several directions of this 
base can be generated from the matrix iW . These 

directions are a linear combination - iW n  - of the 

iW  directions. Let PW  be the matrix that gathers the 

already encountered directions. For a given direction 
of PW  - named wp – the linear combination n that 

leads to the closest direction has to be found: 

Pargmin(d( , ))=
n

n w Wn  An angular distance is 

chosen, as the directions are normalised vectors. That 

leads to projection maximisation: ( )pmax '
n

w Wn  

under the constraint  

1=Wn  (11) 

The solution is (see demonstration in appendices): 

i p

p i i p

'

' '
= −

W w
n

w W W w
. The criterion maximal 

value is then 
i i

p,i p '
c =

W W
w  that is the 'i iW W  

weighted norm of pw . This criteria is used by a 

classification whose algorithm is given table 1. 

Each biological state is defined by the given set of 

directions that gives the (I)W matrix. 

Table 1: Directions classification algorithm 

FOR each time window 
Determine the D dimension of the orthogonal 
subspace.  
The D greatest values of ci are kept. Let  

{ }p,i limI p c c= >  be the set of the indices of the 

corresponding directions that belongs to the 
subspace generated by iW . 

IF card (I) = D 
I indices give the directions associated to an 
already found mode. 
The directions in PW are actualised 

ELSE 
The directions given by I are kept. 
New directions in the subspace generated by 

iW are calculated to be orthogonal to the 

already kept directions. 
This new directions are added to PW  

ENDIF 
ENDFOR 

4. APPLICATION 

4.1. Data presentation 

The classification has been applied on a data set 
obtained from a batch culture of Saccharomyces 
Cerevisiae performed in the INSA LBB laboratory in 
Toulouse (France) (Poilpré, 2002) In this experiment 
high glucose concentration is used. 

Figure 1 exhibits culture measured temperature, 
measured pH, stirring speed (Agit), dissolved 
oxygen, cooling action (act frd), amount of added 
base (ajout base), oxygen consumption and carbon 
dioxide production. pH regulation only involves base 
addition and is thus limited when acidification is 
needed. 
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Figure 2: Combined variables used for classification 

4.2. Measurements pre processing and orthogonal 

subspace determination 

The four y components defined in (5) are presented 

Figure 2. In order to avoid scaling effects, a 
normalisation constraint 90% of each variable value 
to be in the range [-1,1]. Effects of few extra range 
values on the normalisation are thus avoided.  

Figure 3 gives the logarithm of the criterion ratio (10)
. The logarithm allows to better exhibit the values 
very close to zero. The threshold value is fixed to 
0,69 (log (2)) according to the F distribution law with 
a risk chosen at 0,99. 
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Figure 3: Logarithms of the variance ratios and 
decision thresholds. 

4.3. Classification results. 

Applying the procedure described in the previous 
section - with a window size n fixed to 15 - allows 
distinguishing 10 different directions that allow 
generating all the orthogonal subspaces. A given 
mode is associated with a set of directions that 
defined a base of the associated orthogonal subspace. 
The limit threshold on the angular distance clim was 
fixed to 0.9. Figure 4 shows the time evolution of the 
indexes of the recognised directions . The number of 
directions that act at a given time gives the dimension 
of the orthogonal subspace. This dimension expresses 
the number of eigenvalue whose ratio remains below 
the threshold. The number of acting relations is thus 
determined to be at least equal to (4 – this 
dimension).  

In figure 5, segmentation of the culture time into 
modes is presented. Seven significant modes (size 
upper than 9) are generated. They gather 88% of the 
whole set of data (502). Seven periods can be 
detected in this figure. The two first one (mode 1 and 
2) corresponds to the beginning of the culture with 
exponential growth on glucose. Next period (mode 3) 
is induced by the increase in agitation rate and gas 
flow rate whose effect is a better oxygen transfer to 
the yeast. At this stage, growth is very efficient with 
strong oxygen requirement. First part of mode 4 
exhibits a strong decrease in yeast growth, as 
depicted by carbon dioxide production, due to the 
beginning of glucose depletion. The second part 
exhibits additionally a small acid consumption as 
indicated by the pH free evolution as the pH 
regulation can’t act above the set point value.   

A strong acid consumption is observed in mode 5 and 
depicted by a high increase of pH value. The yeasts 
depleted of glucose can’t metabolise directly ethanol, 
the main product of glucose fermentation but 
metabolise the acid produced during this stage. This 
period and the small period between modes 4 and 5 
correspond to Diauxie that is the delay required by 
yeast to adapt its metabolism to the new substrate 
ethanol.  

Next period (mode 6) is the beginning of yeast 
oxydative growth on ethanol. It goes on with a strong 
exponential growth (mode 7) until substrates are 
depleted (expressed by mode 4).  

5. CONCLUSION 

A segmentation method of a culture of 
Saccharomyces Cerevisae has been proposed and 
shown to be efficient on an example of such culture. 
This approach is based on a classification of the 
directions that generates the subspace orthogonal to 
the pre-processed measurements. Nature of the pre 
processing and existence of the orthogonal subspace 
are deduced from the theoretical modelling of the 
fermentation process. The obtained time 
decomposition is deeply related to biological 
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interpretation of the deferent stage of the batch 
process. As the structure of the constraints imposed 
by the stoichiometry doesn’t match the structural 
conditions given by (Liao et al., 2003) it will not be 
possible to estimate the reaction rates without 
matching each observed mode with an expected 
physiological mode. That constitutes the perspective 
of this work 
 

Figure 4: Recognised directions  
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APPENDICE 

The Jacobean associated to the optimisation problem 
is: ( ) ( )P i i iJ ' ' ' 1λ= + −w W n n W W n  

( )i P i i
d J

' 2 ' 0
d

λ= + =W w W W n
n

 

As ( )i i' =W W I  because the W i columns are 

normalised and orthogonal, n is given by:  

i P'

2λ
= −

W w
n  

i i
d J

' ' 1 ' 1 0
dλ

= − = − =n W W n n n . So, we can write 

by substituting the n value: P i i P
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The criteria maximal value is then equal to: 
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Figure 5: Time repartition of the recognised modes 
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