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Abstract: Two issues are addressed in common quadratic Lyapunov func-
tion(CQLF) problem for a set of stable matrices in companion form. It is �rst
shown that an existence condition of a CQLF for a set of Schur stable companion
matrices and that for Hurwitz stable counterparts are equivalent so far as the
bilinear transformation connects them. The second issue is a suÆcient condition
for a diagonal-type CQLF to exist for a set of Schur companion matrices.
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1. INTRODUCTION

The need for investigating existence conditions of
a quadratic Lyapunov function common to a set
of prescribed stable linear constant systems arises
from various control schemes : stability problems
of fuzzy control systems, quadratic stability analy-
sis of uncertain systems, intelligent switching con-
trol approaches and so forth (Liberzon and Morse
1999; Narendra and Balakrishnan 1994; Liberzon
2003; Shorten and Narendra 2000). Should nu-
merical data on the systems are given, one could
easily obtain an answer to the existence of a com-
mon quadratic Lyapunov function(CQLF) with
the help of existent conventional solution codes
such as LMIs.

On the other hand, a general closed-form existence
condition is hard to be attained and has escaped
from extensive research e�orts exerted thus far.
Such an existence problem is currently solved
only under some speci�c conditions or in certain
restricted circumstances. For example, attempts
are made to identify subclasses of systems which
have a CQLF (Narendra and Balakrishnan 1994;
Y. Mori et al. 2001) or to �nd a condition for a
pair of systems having special structures in system
matrices (Shorten and Narendra 2003; Shorten et

al. 2004).

This brief also belongs to this last line of research
and addresses two issues in the CQLF problem
for a set of stable linear constant systems whose
system matrices are in companion form. Both
Hurwitz stability and Schur stability problems



will be treated, yet weight will be given to the
latter problem. The �rst result concerns a relation
between the existence conditions of a CQLF for
a set of Hurwitz companion matrices and of a
CQLF for a set of Schur companion matrices. It
is shown that these two conditions are equivalent
so far as the two sets are connected by the
bilinear transformation. This makes it possible
to express an existence condition in one way or
the other freely. The second result presents a
suÆcient condition for the existence of a diagonal-
type CQLF for a set of Schur stable companion
matrices. It also provides an explicit form of the
CQLF in terms of the matrix entries of the given
set.

The paper is organized as follows. In the next
section, the problem is formulated and some pre-
liminary results are collected. Section 3 establishes
a relation between the existence conditions of a
CQLF for a set of Hurwitz companion matrices
and of its Schur counterparts connected by the
bilinear transformation. As a consequence of this
relation, an exact existence condition of a CQLF
for a pair of Schur companion matrices is obtained
through its existing Hurwitz counterpart. In sec-
tion 4, retaining the companion form restriction,
a suÆcient condition is derived for the existence
of a diagonal CQLF for a set of Schur matrices
in companion form. A simple numerical example
is also provided in this section to illustrate the
obtained results. Section 5 concludes the paper.
Standard symbols in linear algebra will be em-
ployed throughout. For an n by n real matrix
X 2 R

n�n, X 0 denotes the transpose and jX j the
determinant. For X = X

0, X > 0(< 0) stands
for positive(negative)-de�niteness of X . While I

represents a unit matrix as usual, J does the
matrix whose second diagonal has all 1s and the
rest 0s.

2. PROBLEM FORMULATION AND
PRELIMINARIES

In what follows, we identify a real square matrix B
with the continuous-time linear constant system
_x = Bx and refer to it with simply "system". A
quadratic Lyapunov function x

0
Px for a system

and its coeÆcient matrix P will appear inter-
changeably. The similar convenience applies to
a discrete-time constant system and the related
quadratic Lyapunov function.

Assume that a set of Hurwitz stable systems(matrices)
fBig; Bi 2 R

n�n and a set of Schur stable

ones fAig; Ai 2 R
n�n, i 2 f1; � � � ;mg

4

= �m
are given. Common quardatic Lyapunov func-
tion(CQLF) problems are formulated as follows.

[I] Continuos-time case: �nd the existence condi-
tion of a solution Pc = P

0

c
> 0; Pc 2 R

n�n to a
set of Lyapunov inequalities,

B
0

i
Pc + PcBi < 0; i 2 �m: (1)

[II] Discrete-time case: �nd the existence condi-
tion of a solution Pd = P

0

d
> 0; Pd 2 R

n�n to a
set of Stein inequlaities,

A
0

i
PdAi � Pd < 0; i 2 �m: (2)

If solutions exist to these problems, a CQLF
exsits for corresponding continuous-time systems
in [I] and for discrete-time systems in [II]. A com-
mon feature characterizing the above problems is
the following fact, which could be immediately
checked.

[Lemma 1]

Both in [I] and [II], the conditions are invariant
under the similarity transformation. For example
in [I], the condition for the set fBig is equivalent
to that for fT�1BiTg with T being any (com-
mon) nonsingular matrix. Thus, the problems are
coordinate-free.

Another feature that connects the two problems
is:

[Lemma 2] (Y. Mori et al. 2001)

There exists a Pc > 0 in [I], if and only if a Pd > 0
exists in [II], when Ai and Bi are related through
the bilinear transformation:

Bi = (Ai + I)(Ai � I)�1 or

Ai = (Bi � I)�1(Bi + I); i 2 �m: (3)

Furthermore, the problems share a solution, if any,
i.e., Pc = Pd = P > 0.

The latter statement claims the solution sets for
(1) and for (2) coincide with each other. We also
note:

Remark 1 The bilinear transformation is a
one-to-one onto mapping. Thus, once the desired
condition is obtained in either [I] or [II], it can be
readily translated to the other problem via (3),
yielding conditions both for [I] and [II]. One more
pivotal property of the bilinear transformation (3)
is that it does not a�ect the similarity transfor-
mation carried out in its domain space and range
space. For instance, putting T

�1
BiT in place of

Bi in (3) gives T�1AiT .



3. CQLF FOR A SET OF STABLE
COMPANION MATRICES

In the problem [I], some results are recently ob-
tained under two restrictions: the set consists of
only two matrices, i.e.,m = 2 and they are in com-
panion form (Shorten and Narendra 2003; Shorten
et al. 2004). In this section, we put only the latter
restriction to [I] and [II] and consider relations
between these two problems. In view of Lemma
2, assuming the relation (3), one is tempted to
presume that they are equivalent in the sense of
the lemma even if such a restriction is imposed.
This would be obviously validated, if the bilinear
transformation (3) preserves the companion form.
Unfortunately, this is not the case and we need to
look into the problem little more closely. It turns
out, however, that the statements in Lemma 2
mostly hold true as shown in the following the-
orem.

[Theorem 1]

An existence condition of a CQLF in [I] with
companion coeÆcient matrices leads to that in [II]
with companion form of the coeÆcient matrices
which are connected by (3) and vice versa. In
this case, the CQLFs in both problems do not
necessarily coincide but have a one-to-one corre-
spondence.

The key to the proof of this result is the following
fact.

[Lemma 3] (Barnett 1983)

Assume a Hurwitz matrix B 2 R
n�n has the form

of

B =

2
6666664

b1 b2 � � bn
1 0 � � 0

0 1
...

. . .

0 � � � 1 0

3
7777775
=

�
b

I 0

�
(4)

where b = (b1; b2; � � � ; bn), and let A be the matrix
obtained from B by the bilinear transformation,
A = (B � I)�1(B + I). Then, the similarity
transfomation J�(�A)(J�)�1 puts (�A) into the
companion form which conforms to (4). Here, � is
a constant matrix determined solely by the matrix
order n.

Remark 2 The �rst row of � consists of the
binomial coeÆcients of (�1 + �)n whereas the
last column of all 1s and the other entries are

determined successively with a recurrent formula.
For details, see Barnett(1983).

Now, we are in position to verify Theorem 1.

Proof of Theorem 1

Suppose that Bi(Ai); i 2 �m are Hurwitz(Schur)
companion matrices of the form as shown in (4)
and Ai and Bi are linked by (3). Let �Ai( �Bi); i 2
�m be the companion matrices, each of which is
derived from Ai(Bi). It will be proven that the
existence of a common solution to the set of
Lyapunov inequalities (1) assures a solution to the
corresponding Stein inequalities. Due to Lemma 2,
the common solution to

B
0

i
Pc + PcBi < 0; i 2 �m (5)

also satis�es

A
0

i
PcAi � Pc < 0 or (�Ai)

0
Pc(�Ai)� Pc < 0: (6)

Denoting

J�(�Ai)(J�)
�1 = �Ai; (7)

((J�)0)�1Pc(J�)
�1 = �Pd; (8)

we see from Lemma 3 that �Ai is in fact in the
companion form and from Lemma 1 along with
(6) satis�es

�Ai

0 �Pd �Ai � �Pd < 0: (9)

We have thus proven that the existence of a com-
mon solution to Hurwitz inequalities (5) implies
that to Stein inequalities (9). Since the transfor-
mation matrix J� is constant but still not an
identity, the solutions Pc and �Pd do not in general
coincide but still maintain a one-to-one correspon-
dence. The converse process, starting from (2)
to arrive at (1) with Bi = �Bi, can proceed in
the similar manner using the properties of the
bilinear transformation noted in Remark 1. This
completes the proof. Q:E:D:

Theorem 1 indicates Remark 1 on Lemma 2
still applies in the case of companion matrices.
Namely, we have only to know the existence condi-
tion for either [I] or [II] to obain the both, because
one of them yields the other through the bilinear
transformation. To illustrate this point, we note
a recent result mentioned in the beginning of this
section, which assumes m = 2 and the companion
form restriction.

[Lemma 4] (Shorten and Narendra 2003)

Let B1 and B2 be Hurwitz companion matrices.
Then, a CQLF exists in the problem [I] if and only



if the product matrix B1B2 has no real negative
eigenvalues.

Remark 3 Apparently, the above condition is
coordinate-free. This implies the pair in question
is not necessarily con�ned to comapnion form, but
such pairs are allowed that can be transformed
to the companion form by a similarity transfor-
mation with a common transformation matrix
(Shorten et al. 2004).

As a consequence of Theorem 1, Lemma 4 imme-
diately produces the discrete-time counterpart.

[Corollary 1]

Let A1 and A2 be Schur companion matrices.
Then, a CQLF exits in the problem [II] if and
only if the marix

S
4

= (A1 � I)�1(A1 + I)(A2 + I)(A2 � I)�1 (10)

has no real negative eigenvalues.

It is stressed that Theorem 1 enables one to relate
the two problems not only form = 2 case as above
but for any sets of companion systems.

4. DIAGONAL CQLF FOR A SET OF SCHUR
COMPANION MATRICES

In this section, we will focus on a set of Schur
stable companion systems which have a diagonal
common quadratic Lyapunov function(diagonal
CQFL) and derive a suÆcient condition for the
existence of such a function. For a single Schur
stable companion system, a diagonal Lyapunov
function ensures Schur stability of the system
whose state is computed through a �nite precision
arithmetic (Regalia 1992). Considering a set of
such systems amounts, for example, to studying
stability of a discretized switching system under
the above arithmetic scheme. The reason why
we exclusively investigate the problem for Stein
inequalities rather than Lyapunov ones is simply
that for n � 2 no diagonal solution exists to
Lyapunov inequalty with companion form coef-
�cient matrix (Wimmer 1998; Kaszkurewicz and
Bhaya 2000). An advantage of dealing with an
n�n companion matrix is that it includes only n
signi�cant(other than 0 and 1) entries in contrast
to n

2 for matrices without speci�c forms. This,
along with a diagonal solution which also contains
only n unknowns, makes the existence condition of
such a diagonal-type solution to Stein inequality
obtainable in terms of the entries of the coeÆcient

companion matrix (Wimmer 1998). Moreover, in
this case, the matrix inequality can be reduced to
a scalar inequaility, yielding a solution in a closed-
form.

Consider a Stein inequality,

A
0
PA� P < 0; A =

�
a

I 0

�
: Schur stable;(11)

where a = (a1; a2; � � � ; an).

The following known result (Wimmer 1998) will
be central to the later argument.

[Lemma 5]

A diagonal solution to (11), P = diag(p1; p2; � � � ; pn);
P > 0 exists, if and only if

s0 < 1; s0
4

=

nX
�=1

ja� j: (12)

If (12) is satis�ed, a solution is given as in the
following form:

For s0 = 0, P = I ful�lls (11). If s0 6= 0, then,
with l being the integer such that

an = � � � = al+1 = 0; al 6= 0; (13)

P is given by

P = diag(p1; � � � ; pl; Æ0; � � � ; Æ0); (14)

where

p� =
1

s0

(ja� j+ � � �+ jalj); � = 1; � � � ; l (15)

and Æ0 is a positive constant depending upon al

and s0 and satisfying

ja1j
2

p1 � p2

+ � � �+
jal�1j

2

pl�1 � pl

+
jalj

2

pl � Æ0

< 1: (16)

The existence of such a Æ0 is always guaranteed
under the condition (12). The convention on each
of the fractions in the left hand side(LHS) of
(16) is : when the denominator is zero, so are
the numerator and the value of the fraction as
well. This means when some a� = 0 corresponding
fraction is disregarded in the LHS of (16).

Remark 4 Rewriting the Stein inequality (11)
with a diagonal solution, we arrive at the scalar
inequality (16).



It is noted that the condition (12) is a necessary
and suÆcient condition for robust Schur stability
of a polynomial with varying coeÆcient vector
a (Mori and Kokame 1986). On the basis of
this lemma, we now consider the diagonal CQLF
problem in [II] where the coeÆcient matrices have
the form,

Ai =

�
a
i

I 0

�
; i 2 �m; (17)

with a
i = (ai1; � � � ; a

i

n
). In contrast to the single

system case(Lemma 5), however, an exact exis-
tence condition for a diagonal CQLF is still hard
to obtain, yet a simple suÆcient one which gives
the explicit form of a CQLF is obtainable.

[Theorem 2]

Let Schur matrices Ai in the problem [II] be all in
the form of (17). Then under the condition,

s :=

nX
�=1

b� < 1; b�
4

= max
i2 �m

jai
�
j; � = 1; � � � ; n; (18)

there exists a diagonal CQLF or a diagonal solu-
tion PD > 0 to (2).

Proof When s = 0, PD = I apparently serves
as a solution due to Lemma 5. Assume s 6= 0. Let
k be the maximum integer such that bk does not
vanish and de�ne

p̂� =
1

s
(b� + � � �+ bk); � = 1; � � � ; k: (19)

From Lemma 5, we can �nd a Æ satisfying

b
2
1

p̂1 � p̂2

+ � � �+
b
2
k�1

p̂k�1 � p̂k

+
b
2
k

p̂k � Æ
< 1: (20)

With these p̂is and Æ, a desired solution will be
given by

PD = diag(p̂1; � � � ; p̂k; Æ; � � � ; Æ): (21)

To see this, �x any super�x i 2 �m and write ai as
simply a by dropping i for brevity. Now, with this
omission we regard Stein inequality (11) as the
i-th one. To achieve the goal, it suÆces to show
that the LHS of (16) with P of (14) being replaced
by PD remains less than unity. Letting l be the
largest integer such that a� , the element of a, is
not vanishing, we have l � k. Now we compare the
LHS of (16) where PD substitutes P with the LHS
of (20). Note �rst that the number of the non-zero
terms in LHS of (16) does not exceed that of (20).
This is because l � k and whenever b� = 0 the
corresponding a� also disappears. Furthermore,

due to (18), in any pair of the corresponding non-
zero fractional terms the numerator value in (20)
is larger than or equal to the counterpart in (16).
This observation leads to the fact that the solution
PD given in (21) can replace P in (16). In other
words, b�s in (20) can be reduced to ja� js in the
LHS of (20) without violating the inequality, thus
leading to (16) with PD. By Remark 4, PD is
a desired common diagonal solution. This proves
the claimed result. Q:E:D:

We �nally give a simple example to illustrate the
obtained results of this brief. Consider a pair of
companion systems,

A1 =

�
� 0
1 0

�
; A2 =

�
0 �

1 0

�
: (22)

Schur stability condition of these matrices are
j�j < 1 and j�j < 1, respectively. Because of
Lemma 5 they are as well the necessary and
suÆcient condition for the existence of a diagonal
solution to each of Stein inequalities in (2). For
this pair, Theorem 2 gives a suÆcient condition for
a common diagonal solution as j�j+ j�j < 1, while
the exact existence condition for such a solution
can be readily calculated as �2 + �

2
< 1. These

three inequalities show gaps among the respective
conditions for this example. Putting � = 0:6
and � = 0:8, we see that each Stein inequality
has a diagonal solution by Lemma 5, nevertheless
the last inequality indicates that no common
diagonal solution exists. We can, however, assure
the existence of a common(not diagonal) solution
for this companion matrix case owing to Corollary
1, because the matrix S of the corollary is given
by

S =

�
36 32
55 49

�
;

which is a positive matrix known to have a
positive real eigenvalue (Barman and Plemmons
1979). Since jSj = 4, a positive value, so is the
other eigenvalue, which concludes the existence of
a common solution by virtue of Corollary 1.

5. CONCLUDING REMARKS

Two issues are addressed in CQLF problem where
system matrices are in companion form. The re-
lation is made clear between the CQLF problems
for discrete-time and continuous-time cases when
the system matrices are in companion form. It is
shown that once an existence condition of a CQLF
is established for either of the two cases it can be
readily carried over to the other by the bilinear
transformation. The second issue concerns with
an existence problem of a diagonal CQLF for a set



of Schur companion matrices. Using the feature
of the companion form, i.e., sparsity of its non-
zero entries, a suÆcient condition is obtained for
the existence of a diagonal-type CQLF in terms of
the entries of given matrices. The condition also
gives rise to the desired CQLF. These two issues
contrast with each other: a parallelism between
the two cases enabled by the bilinear transfor-
mation and the diagonal CQLF problem which
is speci�c only to the discrete-time case. Any
transformation that preserves the eigen-structure
as the bilinear transformation could a�ord such
a parallelism among di�erent-types of Lyapunov
inequalities (Mori and Kokame 2002). This topic
would be worthy of further exploration.
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