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Abstract: The derivative feedback is a classical but representative means in the design of
control systems, and for practical reasons it is often replaced by its difference approxi-
mation. As the resulting closed-loop system involves a time-delay, it does not necessarily
preserve stability however accurate the approximation is. Following the terminology of
Palmor (1980), it may be said that the practical stability is not always guaranteed. The
present paper studies the condition under which the practical stability is guaranteed for
approximating output difference feedback controllers. Copyright c
2005 IFAC
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1. INTRODUCTION

The derivative feedback is a classical but representa-
tive means in the design of control systems, and the
derivative is often replaced by its difference approxi-
mates in practical situations such that the derivative of
output is not measured directly. For this case, the re-
sulting closed-loop system involves a time-delay orig-
inated from taking the difference, and sometimes loses
the stability however accurate the approximation is.
(e.g., Kokame and Mori 2002).

Similar singular phenomena are known to be possi-
ble when applying the Smith predictive controller to
time-delay systems. In fact Palmor (1980) showed that
any small mismatch between the real time-delay of the
plant and its estimate employed in the controller might
lead to the closed-loop instability. More recently, sin-
gularities caused by small errors in realizing numer-
ically the finite spectrum assignment controllers has
been reported (Van Assche et al. 1999; Santos and
Mondie 2000; Engelborghs et al. 2001). The above
singularities are attributed to the fact that errorneous
controllers lead to a neutral system. It is added that
the robust stabilization of neutral systems is sometimes
quite difficult (e.g., O’Connor and Tarn 1983; Yanu-
shevsky 1992).

It is noted however that the difference approximation of
derivatives leads to a retarded system. Possible insta-
bility when using the difference approximation seems
to have evaded the close attention of researchers, while
a general result has been provided recently in Kokame
and Mori(2002). The result is valid for the case of full
state measurement, and the condition is expressed sim-
ply in terms of the eigenvalues of the product of the in-
put matrix and the gain matrix. The aim of the present
paper is to extend this new result to the case where only
partial states are measurable, and discuss the robustness
of the difference feedback compared with other approx-
imate controllers.

The paper is organized as follows. Section 2 presents
a motivation to use the derivative or difference feed-
back in nonlinear environments. Further, the difficulty
in obtaining a stabilizing difference feedback controller
which approximates a derivative feedback controller is
described briefly. In Section 3, we describe the prob-
lem in the case of output measurements, and intro-
duce some new tools. Section 4 provides the main re-
sults, assuming either the full-order observer-based dif-
ference feedback or the minimal-order observer-based
counterpart. A simple example is added which illus-
trates the robustness of the difference feedback con-



troller. Section 5 concludes the paper with some re-
marks. In the following, the determinant of a matrix
X 2 Cn�n is denoted by det [X ], and its eigenvalues
are denoted by �i(X); i = 1; : : : ; n.

2. DERIVATIVE AND DIFFERENCE FEEDBACK

This section briefly describes the advantage of using ei-
ther derivative feedback or output difference feedback.
Consider a nonlinear system

_x = f(x; u; p); (1)

where x 2 Rn, u 2 Rm, and p 2 Rd are the
state, input, and parameter vectors, respectively. Let
xp be an unstable fixed point associated with p, i.e.,
f(xp; 0; p) = 0. The state deviations Æx(t) = x(t)�xp
are governed by

Æ _x(t) = ApÆx(t) +Bpu(t); (2)

where Ap and Bp are Jacobian matrices @f(xp;0;p)

@x
and

@f(xp;0;p)

@u
, respectively.

Suppose that the state vector x(t) is measurable, but
the parameter p is uncertain. For this case, Æx is not
available, so that the feedback controller u = �KÆx

can not be realized. However, the derivative of Æx is in
principle available from the state measurements, since
Æ _x(t) = _x(t) holds independently of the value of pa-
rameter p. Thus the following feedback is of special
interest:

u(t) = �KÆ _x(t): (3)

In case the derivative is not obtainable or desirable, it
may be replaced by the difference of Æx,

u(t) = �
1

T
K(Æx(t)� Æx(t � T )): (4)

Note also that the state difference is obtained from the
relation Æx(t) � Æx(t � T ) = x(t) � x(t � T ). Let
us denote the linearized system (2) in the case of the
nominal p0 by

Æ _x(t) = AÆx(t) +Bu(t); (5)

and suppose that it is stabilized by either the derivative
feedback (3) or the difference feedback (4) . Then,
from continuity, the closed-loop stability will remain
for a small change of the parameter vector. It means
that as far as the closed-loop stability is maintained,
the state x converges to the true steady state xp. This
desirable property may be compared to the usefulness
of the integrator in servo systems. It is also noted here
that in the physics community the difference feedback
is well known under the name of the delayed feedback,
since the invention by Pyragas (1992).

A problem arises with the difference feedback, as it
makes a delay-differential system of retarded type:

Æ _x(t) = AÆx(t) �
1

T
BK(Æx(t)� Æx(t� T )): (6)

That is, even if the derivative feedback (3) is stabiliz-
ing, its differece approximation (4) does not always
guarantee the stability of the closed-loop system (6)
having small T . As for a general fact, Ushio (1996)
first pointed it out for discrete-time systems that stabi-
lization via the difference feedback is not always pos-
sible. The same limitation was proven for continuous-
time systems in Nakajima (1997) and Just et al. (1997).
The inherent limitation is immediate from the follow-
ing lemma (see e.g., Kokame et al., 2001).

Lemma 1 Consider the n-th order delay differential
system

Æ _x(t) = AÆx(t) +H(Æx(t)� Æx(t� T )): (7)

If det [�A] � 0, then the system is unstable for any
T > 0. Further there exists a monotone unstable mode.

The determinant assumption of Lemma 1 means that
the system has either an eigenvalue on the origin or
an odd number of real positive eigenvalues. Hence it
is called the odd number condition. Especially in the
case where det [�A] = 0, it is easy to see that the re-
tarded system (7) always has an eigenvalue on the ori-
gin, hence it is not asymptotically stable.

3. DYNAMIC CONTROLLERS

Suppose that the nonlinear system (1) is associated
with the output vector,

y = h(x; u; p); y 2 Rq: (8)

The output deviation Æy = y� yp, yp = h(xp; 0; p), is

Æy(t) = CpÆx(t) +Dpu(t); (9)

where Cp =
@h(xp;0;p)

@x
and Dp =

@h(xp;0;p)

@u
. Though

Æy is not available as before, we can utilize the deriva-
tive of Æy. Consider the dynamic derivative feedback
controller,

_�(t) = Ac�(t) +BcÆ _y(t);

u(t) = Cc�(t) +DcÆ _y(t); (10)

where � is assumed to have an adequate dimension.
Suppose that the controller (10) stabilizes the nomi-
nal model

Æ _x(t) = AÆx(t) +Bu(t);

Æy(t) = CÆx(t) +Du(t); (11)

where C and D respectively denote Cp and Dp for the
nominal p0. In the following, we are devoted to the
cases where either D = 0 or D 6= 0; Dc = 0;. Further-
more (A;B) and (A;C) are assumed to be controllable
and observable, respectively. It is confirmed again that
if p changes to p̂ in a small neighborhood of p0, the
state will converge to the corresponding steady state x p̂
without offsets.



In the first place, consider the case D = 0. For this
case, we may take Æ _y as the output:

Æ _x(t) = AÆx(t) + Bu(t);

Æ _y(t) = CAÆx(t) + CBu(t): (12)

The above system is observable if and only if A is
nonsingular. Thus if det [�A] 6= 0, especially even if
det [�A] < 0, we can find a stabilizing dynamic con-
troller of the form (10) . The closed-loop system is
given by

_z(t) = Az(t) + Bv(t)

=

�
A BCc

0 Ac

�
z(t) +

�
BDc

Bc

�
v(t);

v(t) = �K _z(t) = [C 0] _z(t); (13)

where z = [ÆxT �T ]T and v denotes Æ _y.

Proceed to the second case where D 6= 0 and Dc = 0.
The closed-loop system is written by

_z(t) = Az(t) + Bv(t)

=

�
A BCc

0 Ac

�
z(t) +

�
0
Bc

�
v(t);

v(t) = �K _z(t) = [C DCc] _z(t); (14)

Assuming the closed-loop systems (13) and (14) are
stable, we may utilize a difference approximation in
place of v,

vd(t) = �
1

T
K(z(t)� z(t� T ))

=
1

T
(Æy(t)� Æy(t� T )):

Now we would like to see if such a difference approx-
imation can stabilize for some small T . It is noticed
here that for both cases, the singularity det [�A] = 0
implies det [�A] = 0 again. Thus the zero eigenvalue
problem can not be avoided by the use of the dynamic
controller (10) .

By noting for both cases, the closed-loop systems are
expressed as a derivative feedback of the augmeted
state, we can apply a recent result of Kokame and Mori
(2002). Given the linear time-invariant system,

Æ _x(t) = AÆx(t) +Bu(t); (15)

suppose that it is stabilized by the derivative feedback

u(t) = �KÆ _x(t) + v(t): (16)

The closed-loop system is

Æ _x(t) = �AÆx(t) + �Bv(t); (17)

where �A = (I + BK)�1A is Hurwitz from the as-
sumption, and �B = (I + BK)�1B. If we employ an
approximate difference feedback,

u(t) = �
1

T
K(Æx(t) � Æx(t� T )) + v(t); (18)

then the closed-loop system is given by

Æ _x(t) = AÆx(t)�
1

T
BK(Æx(t)�Æx(t�T ))+Bv(t):

(19)
The stability of the time-delay system (19) does not
follow automatically even if T is chosen to be small
enough. Following the terminology of Palmor (1980),
the closed-loop system (19) will be said to be prac-
tically stable if it is stable for all sufficiently small T .
From this definition, it is said that the closed-loop sys-
tem is not practically stable, if there exists an arbitrary
small T for which the closed-loop system is unstable.
The following lemma is immediate from Theorem 1
and Theorem 3 of Kokame and Mori (2002), and it
provides a key to determine if the time-delay system
is stable for small T .

Lemma 2 Let �(s) be the complementary sensitivity
of the derivative feedback system (17) , i.e.,

�(s) = sK(sI � �A)�1 �B; (20)

and let g(s) be an entire function defined by

g(s) = det [I � (1�
1� e�s

s
)�(1)] (21)

Then, as to the practical stability of the retarded system
(19) , the followings are valid.
(i) If all the roots of g(s) are located in the open left-
half-plane, the closed-loop system is practically stable.
(ii) If g(s) has a root in the open right-half-plane, the
closed-loop system is not practically stable.

From Lemma 2, we know that the practical stability of
the difference feedback depends on the high frequence
gain �(1). By noting �(1) = (I + KB)�1KB,
Lemma 2 is rewritten in terms of the eigenvalues of
matrix product KB, as follows:

Lemma 3 Consider a curve on the complex plane,

� = f
�j!

1� e�j!
: �2� < ! < 2�g: (22)

The curve � divides the whole plane into two un-
bounded regions, �s and �u. Let �s denote the one
which contains the origin (see Fig. 1). Then the fol-
lowings hold:
(i) If all the eigenvalues of KB are located in �s, the
closed-loop system (19) is practically stable.
(ii) If KB has an eigenvalue in the region �u, the
closed-loop system (19) is not practically stable.

Some comments are put forth on Lemma 3. A neces-
sary condition for the practical stability is that I +KB

is anti-Hurwitz. This is stronger than the necessary
condition det [I + KB] > 0, which results from the
Hurwitzness of �A and the assumption det [�A] > 0. A
sufficient condition is that KB is Schur. In this con-
nection, it is noted that when the derivative feedback is
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Fig. 1. Boundaries of �s(solid) and the unit disk(dotted)

accompanied with a small delay � ,

u(t) = �KÆ _x(t� �); (23)

the closed-loop system becomes of neutral type. The
instability caused by such a small delay in the loop has
been studied for a various kind of systems (see e.g.,
Barman et al. 1973; Datko 1988; Louisell 1995). Ow-
ing to the improved tool of Logemann et al. (1996), we
know that the neutral system is practically stable ifKB

is Schur. Conversely if j�i(KB)j > 1 for some i, then
the neutral system is not practically stable.

Next we examine the practical stability condition for
the case of taking the sampled-data control approach.
Supposing a sampling interval T and the input gener-
ated by the zeroth-order hold, we have a sampled-data
system,

xi+1 = Asxi +Bsui; xi = Æx(iT ); ui = u(iT );

where As = eAT ; Bs =
R
T

0
eAtBdt. Take the ap-

proximate input ui = K

T
(xi � xi�1), then the order of

the closed-loop system becomes twice that of the plant.
Simple analysis shows that as T ! 0, characteristic
roots tend to n-tuple of 1 and n eigenvalues of �BK.
Further inspection shows that for T > 0, the n-tuple
roots are bifurcated as follows:

�i = 1 + �i((I +BK)�1A)T + o(T ); i = 1; : : : ; n:

Since �A = (I + BK)�1A is Hurwitz, �i belong to
the open unit disk for small T > 0. Thus the practical
stability of the sampled-data system depends again on
whether BK (or equivalently KB) is Schur. It should
be emphasized that the practical stability of the differ-
ence approximation is less restrictive than that of the
sampled-data implementation, and that of the deriva-
tive feedback with a small delay.

Now we are in position to examine the case of using the
dynamic controller (10) . When D = 0, the closed-
loop system has been shown to be expressed by (13) .
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By applying Lemma 3, we know that the practical sta-
bility of the difference feedback controller simply de-
pends on KB = �CBDc. Else if D 6= 0 and Dc = 0,
the practical stability depends on KB = �DCcBc.

The graphical test based on the eigenvalues of �(1)
is more suited to the analysis of observer-based con-
trollers. Figure 2 illustrates the region �s which cor-
responds to �s in Fig. 1. The open region �s is
left to the boundary f�(j!) : �2� < ! < 2�g,
where �(s) = s=(s � 1 + e�s). It is of course that
if �i(�(1)) 2 �s, the practical stability is assured.
The boundary asymptotically approaches the line that
is parallel to the imaginary axis with passing through
2
3
+ j0. The asymptote is denoted by the dashed line in

Fig.2, and the dashed line in Fig. 1 corresponds to the
asymptote. Thus we have a simple sufficient condition
for the practical stability.

Lemma 4 If

Re�i(�(1)) <
2

3
; i = 1; : : : ;m; (24)

then the closed-loop system (19) is practically stable.

4. OBSERVER-BASED CONTROLLERS

To begin with, we analyze the full-order observer-based
controllers. The following is a slight extension of The-
orem 5 of Kokame et al. (2001).

Theorem 5 Suppose that L and K are such that
A � LCA and A � BK are Hurwitz. Then the multi-
input multi-output system (11) is stabilized practi-
cally by the full-order observer-based output difference
controller,

_�(t) = A�(t) +Bu(t) + L(
1

T
(y(t)� y(t� T ))

�CA�(t)� CBu(t)�D _u(t));

u(t) = �K�(t); (25)



if
�i(DKL) 2 �s; i = 1; : : : ; q: (26)

Especially if D = 0, the practical stability is assured.
Proof: The closed-loop stability is a standard fact
when applying the full-order observer-based controller:

_�(t) = A�(t) +Bu(t)

+L(Æ _y(t)� CA�(t) � CBu(t)�D _u(t));

u(t) = �K�(t): (27)

Notice that this controller is strictly proper:

_�(t) = Ac�(t) +BcÆ _y(t);

Ac = (I � LDK)�1(I � LC)(A�BK);

Bc = (I � LDK)�1L;

u(t) = �K�(t): (28)

As Dc = 0, the closed-loop system (14) is stable.
From (14) , we have KB = �DCcBc = DKL(I �
DKL)�1. Manipulation yields that �(1) = DKL,
hence Lemma 3 leads to the conclusion. Q.E.D.

If the triplet (A;B;C) is controllable and observ-
able, and further det [A] 6= 0, then so is the triplet
(A;B;CA). Thus there always exist L and K that sat-
isfy the assumptions of Theorem 5.

The controller (27) nearly acts as the state feedback
u = �KÆx. If one wishes a controller acting asymp-
totically as u = �KÆ _x, he may use the following con-
troller:

_�(t) = (A� LC)�(t) + (B � LD) _u+ LÆ _y(t);

u(t) = �K�(t); (29)

whereA�LC is Hurwitz. If the derivative of measure-
ments should be avoided, we may have its difference
counterpart:

_�(t) = (A� LC)�(t) + (B � LD) _u

+
1

T
L(y(t)� y(t� T ))

u(t) = �K�(t): (30)

For this case, KB = DK(I + BK � LDK)�1L =
DK(I� �LDK)�1 �L, where �L = (I+BK)�1L. Then
the practical stability can be checked using �(1) =
DK �L = D(I +KB)�1KL.

Now we proceed to the minimal-order observer-based
controller for the case D = 0:

_�(t) =M�(t) +Nu(t) +HÆ _y(t); (31)
Æx̂(t) = Q�(t) +Ru(t) + SÆ _y(t); (32)
u(t) = �KÆx̂(t); (33)

where � 2 Rn�q , and the matrices are assumed to be
compatible with the vectors. If the matrices S;Q;U
and H satisfy

HCA� UA = �MU; (34)
SCA+QU = I; (35)
R = �SCB; N = UB �HCB; (36)

with M being Hurwitz, then � and x̂ converge to
UÆx and Æx, respectively. The dynamical system
(31) (32) is then called the minimal-order observer.
This observer combined with the output u = �KÆx̂ is
rewritten in the standard form:

_�(t) = (M �NK(I +RK)�1Q)�(t)

+(H �NK(I +RK)�1S)Æ _y(t);

u(t) = �K(I +RK)�1Q�(t)

�K(I +RK)�1SÆ _y(t): (37)

When using the controller (33) (or (37) ), the closed-
loop system is asymptotically stable if and only if
A � BK is Hurwitz. It is noticed here that the over-
all system can be written in the form of a derivative
feedback, as in (13) :

_z(t) = Az(t) + Bv(t)

=

�
A �BK(I +RK)�1Q
0 M �NK(I +RK)�1Q

�
z(t)

+

�
�BK(I +RK)�1S

H �NK(I +RK)�1S

�
v(t);

v(t) = �K _z(t) = [C 0] _z(t) = Æ _y(t); (38)

where z(t) = [Æx(t)T �(t)T ]T .

For this case, we have KB = CBK(I +RK)�1S. By
noting I+KB = (I �CBKS)�1, it is immediate that
�(1) = (I + KB)�1KB = CBKS. Thus we have
the following.

Theorem 6 Assume that the MIMO plant (11) has
D = 0, and C is of full row rank. Further assume
that the dynamic controller (33) satisfies the condi-
tions (34) (35) (36) , and both M and A � BK are
Hurwitz. Then the difference approximate controller,

_�(t) =M�(t) +Nu(t) +
1

T
H(y(t)� y(t� T ));

Æx̂(t) = Q�(t) +Ru(t) +
1

T
S(y(t)� y(t� T ));

u(t) = �KÆx̂(t); (39)

practically stabilizes the system (11) , if

�i(CBKS) 2 �s; i = 1; : : : ; q: (40)

Example 7 Consider a second-order system having

A =

�
0 1
1 1

�
; B =

�
0
1

�
; C = [ 0 1 ]; D = 0:

TakingU = U` = [` `�1] yieldsM = �`,N = �`2,
H = `2 + ` � 1, S = [1 � ` `]T , Q = [1 � 1]T ,
and R = [` � 1 � `]T . By denoting K = [k1 k2],
the controller (37) is stabilizing if and only if ` > 0,
k1 > 1 and k2 > 1. For our example the output vari-
able is scalar, hence Theorem 6 guarantees the practi-
cal stability if CBKS = k1(1 � `) + k2` < 1. We
have examined the practical stability of the difference
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approximate controller taking ` = 2; k1 = 2; k2 = 1:3,
and T = 0:1. The initial response is shown by solid
line in the lower graph of Fig. 3. The dotted line is for
reference, showing the response of the observer-based
controller (37) . The upper graph of Fig. 3 contains
the response of the controller (37) having a small de-
lay of � = 0:001 (solid) in the measurement of y, and
that of the sampled-data implementation with a sam-
pling time T = 0:001 (dotted). It is observed that the
difference feedback is more robust than the sampled-
data feedback. Further it has preserved the stability in
the presence of the same delay in the measurements.

5. CONCLUDING REMARKS

The present paper has dealt with dynamic controllers
which use the output differences in place of output
derivatives. The practical stability of the closed-loop
system is the main topic of the paper, and some stability
criteria have been presented for the case of observer-
based controllers. The criteria are written in a form
of algebraic condition about the gain matrices. Taking
the practical stability into account in the design pro-
cess is left to the future work. This study was partly
supported by Grant-in-Aid(No. 16560392) for Scien-
tific Research.
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