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Abstract: In this paper we present a constructive observer design procedure for
a class of nonsmooth dynamical systems, namely systems of Lur’e type with a
monotone multivalued mapping in the feedback path. Examples of such systems
include various classes of hybrid systems. Under the assumption that the observed
system is well behaved, we prove that the proposed observers are well-posed (i.e.
that there exists a unique weak solution to the observer dynamics), and that
the observer asymptotically recovers the state of the observed system, under the
assumption that the weak solutions of the observer are absolutely continuous. The
results are illustrated on an example of a deep sea oil drilling assembly with a
string. Copyright 2005 IFAC
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1. INTRODUCTION

U —p| X=Ax+Bu-Gwl—p y

In this paper an observer design procedure for y=Cx
systems of Lur’e type with a maximal monotone
multivalued mapping in the feedback path (see

figure 1) is developed. The requirements that the w Hx
mapping is maximal and monotone generalize the ‘/

usually considered concept of continuous, sector A <
bounded nonlinearity (Vidyasagar, 1993).

Examples of SYSte.mS 9btamed by interconnect- Fig. 1. Lur’e type system with maximal monotone multi-
ing linear dynamics in a feedback configura- valued mapping
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project grant SICONOS (IST2001-37172) ure 1, include various classes of hybrid systems:



certain piece-wise linear systems (Sontag, 1981)
(fig. 2a), linear relay systems (Johansson et al.,
1999) (figure 2b), linear complementarity systems
(van der Schaft and Schumacher, 1998), (Heemels
et al., 2000), (figure 2¢), and electric circuits with
switching elements (e.g. ideal diodes, fig. 2c, MOS
transistors, characteristic in fig. 2d).
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Fig. 2. Examples of maximal monotone mappings

We propose a Luenberger observer structure based
on rendering the linear part of the error dynamics
strictly positive real (SPR). As the considered sys-
tems can be non-Lipschitz, existence and unique-
ness of solutions (i.e. well-posedness) of the sys-
tem and observer is not guaranteed automatically.
An observer design methodology for Lur’e type
systems with locally Lipschitz slope restricted
nonlinearities was studied before in (Arcak and
Kokotovié, 2001). However, since nonsmooth and
non-Lipschitz nonlinearities are allowed in the
system studied here, the results of (Arcak and
Kokotovié, 2001) are not applicable, and we have
to resort to a framework of convex analysis, to
establish an observer design procedure for the
considered class of systems.

Under the natural assumption that there exists
a solution of the observed system, it is proven
that there exists a weak solution of the proposed
observer, and that this solution is unique. Proving
the existence of strong solutions for the proposed
observer structure is an open research problem.
Some sufficient conditions will be given in the
paper. Well-posedness of the system is an impor-
tant theoretical question, and, from a practical
standpoint, if an observer is to be numerically im-
plemented, well-posedness is necessary to ensure
the proper behavior of the implementation.

It is further shown that the observer recovers
asymptotically the state of the observed system.
These results are applied to a simplified model of
a deep sea oil drilling assembly with a string, with
the set-valued dry friction with Stribeck effect
(Mihajlovi¢ et al., to appear).

Stability of Lur’e type systems with SPR linear
part and a discontinuous nonlinearity has been
studied in (Yakubovich, 1964,1965), but the prob-
lem of existence and uniqueness of solutions for

this systems was not considered. The main results
in this paper generalize results from (Brogliato,
2004) to the case of systems with external inputs.

2. PRELIMINARIES

The material in this section is taken from (Aubin
and Cellina, 1984), (Brezis, 1973), (Tyrell Rock-
afellar, 1970).

With £}, .[0,00) and £? [0,00) we denote the
Lebesgue spaces of locally integrable and square

integrable functions functions defined on [0, c0).

A mapping p: X — Y, where X, Y C R/, is said to
be multivalued if it assigns to each element x € X
a subset p(z) C Y (which may be empty). The
domain of the mapping p(-), dom p is defined as
domp = {z|z € X, p(z) # 0}. We define the graph
of the mapping p as:

Graphp = {(z,z") | 2 € p(z)}. (1)

Multivalued mapping p is said to be monotone if

Vxi1,x2 € domp, Vzi € p(x)Vrs € p(x2)

(z7 — 25,21 —22) 20, (2)
where (-,-) denotes the inner product.

A multivalued mapping p is said to be mazimally
monotone if its graph is not strictly contained
in the graph of any other monotone mapping. In
other words, maximality means that new elements
can not be added to the Graph p without violating
the monotonicity of the mapping. All the exam-
ples in figure 2 are maximal monotone mappings.

A differential inclusion (DI) is given by an expres-
sion of the form

i € Ft,z) (3)

where F' is a set-valued mapping, that associates
to the state z of the system and time ¢ the set
of admissible velocities. An absolutely continuous
(AC) function z is considered to be a strong solu-
tion of the DI (3) if (3) is satisfied almost every-
where. A point zq is a fized point (equilibrium) of
the DI (3) if 0 € F(t,x0), Vt.

An important result concerning differential inclu-
sions of the form

#(t) € —A(z(t)), z(0) €domA  (4)

where A is a maximal monotone mapping is that
there exists a unique strong solution z, defined
on [0,00) (Brezis, 1973, section 3.1), (Aubin and
Cellina, 1984, chapter 3).

To generalize the previous result to nonautonomous
DIs we consider the system of the form:

#(t) € —A(z(t)) + u(t), z(0)cdomA (5)

where A is a multivalued mapping and the ex-

ternal input signal u € £j, [0,00). Following



(Brezis, 1973, section 3.2) we define a continuous
function z to be a weak solution to (5) if there
exist sequences u, € £j,.[0,00) and z, € C[0,c0)
such that z,, is a strong solution to

ITn € —A(zn(t)) + un,

un, — uin £,.[0,00) sense and z,, — z uniformly

on every interval T' C [0, 00).

Proposition 2.1. (Brezis, 1973, theorem 3.4) For
the case when the mapping A in (5) is mazimal
monotone mapping there exists a unique weak
solution x to (5) for every u € L},.[0,0).

A difference between weak and strong solutions
is that a weak solution, while continuous, is not
necessarily absolutely continuous. However, the
following holds:

Proposition 2.2. (Brezis, 1973, proposition 8.2):
For the case when the mapping A in (5) is maz-
imal monotone mapping we have the following
properties:

o If a strong solution to (5) ewists, it is unique
o Any AC function x which is a weak solution
to (5) is also a strong solution to (5).

Following (Wen, 1988, theorem 1), we call a lin-
ear system given by (A4, B,C), where B has full
column rank (i.e. Ker{B} = (), strictly positive
real (SPR) if there exist a P = PT > 0 and a
@ = QT > 0 such that:

PA+ATP=-Q (6a)

B'P=C (6b)

3. PROBLEM STATEMENT

Consider the system that is given by the following
differential inclusion (see figure 1):

i = Az — Gw + Bu (7a)
w € o(Hz) (7b)
y=Cx 7c)

where Hz(0) € dom g and A € R™*" B € R"*"™,
G € R™! ig full column rank, H € R*" and
C € RP*", The mapping o : R — R/ is assumed
to be maximally monotone.

Assumption 3.1. For all initial states z(0) such
that Hz(0) € dom g and inputs u € £},.[0, 00)
of interest, we assume that the system (7) has a
strong solution.

The proposed observer has the following form:
i=(A—-LC)2—Guw+ Ly + Bu (8a)
w € o((H — KC)z + Ky) (8b)
9=C% (8c)
where K € R!*P and £(0) are such that (H —
KC)z(0) + Ky(0) € dom po(-).

4. MAIN RESULTS

The problem of observer design consists in finding
the gains L, K which will guarantee that there ex-
ists a unique solution 2 to the observer dynamics
on [0,00), and that Z(t) — z(t) as t — oo. In
this section we will prove that if L and K are
chosen such that the triple (A — LC,G,H — KC)
is SPR the obtained observer (8) will satisfy the
mentioned requirements.

Before we prove this we will first show how the
gains L and K can be computed such that (A —
LC,G,H — KC) is SPR. This can be achieved by
solving the matrix inequality:

(A-LC)'P+P(A-LC)<0 (9a)
G'"P=H - KC. (9b)

Inequality (9) is a linear matrix inequality in
P,K,LTP. For necessary and sufficient conditions
for the existence of solutions for (9), see for
instance, (Arcak and Kokotovié, 2001).

To prove that SPR property of (A — LC,G, H —
KC) guarantees the proper behavior of the ob-
server, we start of with a theorem on well-
posedness.

Theorem 4.1. Consider the system (7), under as-
sumption 3.1, and the observer (8). If the triple
(A— LC,G,H — KC) is SPR, the observer dy-
namics (8) has a unique weak solution on [0, 00).

Proof. Since the triple (A — LC,G,H — KC) is
SPR and G has full column rank there exist P, Q)
that satisfy (6). Introduce the change of variables:

z=R(Z +g), (10)
in (8), where RR = P and define

g=(H—-KC)"(H-KC)H-KC)")'Ky.

(11)
From the SPR condition it follows that H —
KC has full row rank (as H — KC = G'P),
and hence the inverse in (11) exists. Define the
mapping f : R" — R” as f(z) = R Y(H —
KC)"o((H — KC)R™'z). Using SPR condition
(6b), (8) transforms into:

3ER(A—LOYR 'z — f(2)
+R(Bu+Ly+ (A—LC)g+4g) (12)

where z(0) € dom f(-). From the SPR condition
(6Db) it follows that H — KC and (H — KC)R™!
have full row rank, and together with the fact
that ¢ is maximal monotone we have that f is

maximal monotone as well (Tyrell Rockafellar and
Wets, 1998, theorem 12.43).

From the SPR condition (6a) it follows that R(A—
LO)R™' + R(A — LCT)R™! is negative definite.
Hence the mapping 2 — —R(A — LO)R™ 'z +



f(2) is maximal monotone (Tyrell Rockafellar and
Wets, 1998, corollary 12.44). By assumption we
have v € £},.[0,00), y € £,.[0,00). Moreover,
y is AC and thus it follows that § € £},.[0,00).
By virtue of proposition 2.1, (12) and hence (8)

posses a unique weak solution.

To ensure the existence of strong solutions more
stringent assumptions have to be imposed on the
original system and proposed observers. If we con-
sider again the inclusion (12), conservative suffi-
cient conditions for existence of strong solutions
are given for instance in (Brezis, 1973, theorem
3.6), which state that:

o u € L0, 00), § € L]0, 00)

e there exists a proper convex lower semicon-
tinuous function ¢ with £(z) > 4, for all 2
and some ¢, such that:

—R(A—LC)R 2+ f(2) = 0&(2)  (13)

where 9¢ denotes the subdifferential of &
(see (Brezis, 1973),(Tyrell Rockafellar, 1970),
(Tyrell Rockafellar and Wets, 1998) for the
details). For (13) to hold, it is required that
the mapping z — —R(A — LOYR 'z + f(2)
satisfies a property called maximal cyclic
monotonicity. In our case this would mean
that R(A — LC)R™! is symmetric positive
semi-definite as shown in (Tyrell Rockafel-
lar, 1970, chapter 24), and that g can be
written as ¢ = J¢ for some proper lower
semicontinuous function ¢ (Tyrell Rockafel-
lar, 1970, theorems 24.8, 24.9).

For particular choices of maximal monotone map-
pings (e.g. relay or complementarity character-
istics) some results are available in the litera-
ture ((Heemels et al., 2000; Gamlibel et al., 2003;
van der Schaft and Schumacher, 1998; Lootsma
et al., 1999)). The question of existence of strong
solutions for the general observer structure is an
open research problem, and will be considered
in the future work. Here, we make the following
assumption.

Assumption 4.2. Weak solutions for the observer
(8) are AC (and thus, weak solutions are strong
solutions by proposition 2.2).

For the observer (8) the observation error e := z —
Z dynamics can be formed as:

ée=(A-LC)e— G(w—w) (14a)
w € o(Hz) (14b)
W€ o(Hi + K(y —9)) (14c)

Note that the point eq is a fixed point (equilib-
rium) of system (14) for a given z-trajectory if it
satisfies the following inclusion for all ¢ > 0:

0€ (A—LC)ey—Glo(Hz(t)) — o(HZ(t) +KC(€105);
where Z(t) = z(t) — eq.

Theorem 4.3. Consider the observed system (7)
under assumption 3.1, the extended observer (8),
where the triple (A — LC,G,H — KC) is SPR,
under assumption 4.2, and the observation error
dynamics (14). The point e = 0 is the unique fized
point of the observation error dynamics (14) and
is globally exponentially stable.

Proof. Note that eg = 0 is a fixed point of (14),
since it satisfies the inclusion (15).

Next, we show that ey = 0 is the only fixed point.
From (A — LCQ)ey € G(o(Hz) — o(HZ + KCey))
for all ¢ > 0 it follows that P(A — LC)eq €
PG(o(Hz(t)) — o(Hz(t) + KCeg)) for some t.
Using the SPR condition (6b) we get the following

condition for the fixed point eg:
eqg P(A— LC)eo = (H — KQ)ep) " (w — 1)

where w € o(Hz(t)) and @ € o(HZ(t) + KCey).
From the SPR condition (6a) it follows that
eg P(A — LC)eg < 0. From the monotonicity
condition (2) for g(-) it follows that e] P(A —
LC)ey = ((H — KC)eo) " (w — w) > 0. Hence,
eo = 0 is the only solution of the inclusion (15).

To show that the unique fixed point eqg = 0 is glob-
ally exponentially stable consider the Lyapunov
function V = %eTPe. Since by assumption 3.1 x
is AC, and by assumption 4.2 Z is AC it follows
that e is also AC, and é exists almost everywhere.
Hence, V is also AC, and the derivative V exists
almost everywhere. V' satisfies:

V=e"Pé=e P((A—LC)e—G(w — b))
_ —%eTQe —T(H-KO) (w—b) (16a)

1
< fEeTQe

for some w, W satisfying (14b),(14c). From V (t) <
V(0) — L [TeT(1)Qe(r)dr it follows that the
AC function of time V is nonincreasing, and
%)\mm(P)eT(t)e(t) < V(0) — %fot Anin (Q)eT (T)e(T)dT
where Apin(-) denotes the minimal eigenvalue.
From Gronwall’s lemma (Vidyasagar, 1993):
1 Amin(Q)
(Pt < _Aminl@) )
2)\mm( Je' (t)e(t) < V(0) exp( /\mm(P)t
(17)
¢

5. EXAMPLE

A simplified scheme of a deep see oil drilling
equipment is depicted in figure 3. The assembly
consists of the drilling tool (depicted by a small
disc), rotary table (big disc) which acts as a
reservoir of kinetic energy, DC motor, and a drill
string, which is used to transmit the energy from
the surface to the drilling tool.

An experimental setup mimicking the drilling
equipment was realized by Mihajlovi¢ et al.



DC motor

Fig. 3. Drilling assembly with a string

(Mihajlovi¢ et al., to appear). It was shown that
the dynamics of the experimental setup can be
accurately described by the following model:

.’i?l = T2 — I3 (18&)
km, ko 1

fg = —U— —T1 — —Lru 18b

oy = u = g = ey (z2) (18b)

. k 1

I3 € jjatl - lefrl(.’I,'g), (18c¢)

where x; is the difference in angular positions of
the discs, xo is the angular velocity of the upper
disc and z3 is the angular velocity of the lower
disc. The measured variable is taken to be y = x1.

Tyru(-) and Typi(-) denote the friction moments
at the upper and the lower disc, respectively.
Tyru(-) is dominated by the viscous friction, and
for simplicity, is here taken to be equal to bypxs.
The friction moment at the lower disc T¢,(-) is a
dry friction with the Stribeck effect, i.e. negative
damping appears at a certain range of angular
velocities. To describe this friction torque a set-
valued characteristic based on neural networks is
used in (Mihajlovié et al., to appear):

2
1+ ewrlzs| )+

)) sign(zs) + bjz3

(Tstickt +T1(1 —

To(1 — ————
2( 1 + ewzlzs|

for x3 # 0
(~Tsticki, Tsticki]
forxz3 =0
(19)
Numerical values of the parameters in (18) and
(19) are given in table 1. The set valued friction
law (19), with parameter values from table 1 is
depicted in figure 4.

Table 1. Parameter values of the model

Ju  04765EEZ [T 0.1642Nm
J; 0.03265%%2 T 0.0603Nm
km  3.9950% Ty —0.2267Nm
ke 0.07271m w1 5.7468
bup 2.2247%5(1—“; ws 0.2941

b 0.0109%Em

For the purpose of simulation the input signal u
in (18) is chosen to be a constant signal, u = 2V.
It is easy to check that for the chosen input
signal the system (18) satisfies the conditions of
(Filippov, 1988, theorem 2.7.1), and hence has a
solution on a arbitrarily long time interval for
every initial condition z, i.e. the system (18)
satisfies assumption 3.1.

Fig. 4. Dry friction characteristic

The friction mapping depicted in figure 4 is not
monotone, but can be transformed into a mono-
tone mapping using the technique of loop trans-
formation (Vidyasagar, 1993). The new friction
mapping is defined as Tp.(w) = Tpu(w) — mw,
where m = —0.02 is the maximal negative slope
of the graph in figure 4. The system matrix A is
replaced by A = A — mGH.

We will design the observer (8). Observer design of
the form (8) for system (18) entails finding gains

L and K such that the triple (A—LC,G, H—KC)
is SPR. The following values for P, ,L and K are
found:

0.804 0.029 0.066 0.548 —0.000 —0.000
P = » Q

= [—0.000 0.970 —0.036],
—0.000 —0.036 0.092

0.029 0.110 —0.000
0.066 —0.000 0.032

L =[2.476 5.199 —26.220 ]T , K = —2.025.

We will show simulations for the initial state
for the system taken as z(0) = [0 0 0]" and
for the observer as #(0) = [3 3 3]'. The
solution of the system (18) is constructed using
the dedicated technique for simulating friction
based on the switched friction models presented in
(Leine et al., 1998). The solution of the observer
(8) is computed using the implicit midpoint rule
(Juloski, 2004).

The simulation results are depicted in figure 5
and the estimation error is depicted in figure 6.
When a constant input voltage is applied (i.e. a
constant torque is applied to the upper disc) slip-
stick oscillations in the angular velocity of the
second disc x3 occur due to the negative damping
in the friction law (19). During this oscillations
the velocity of the third disc alternates between 0
(stick phase), and a positive value (slip phase). As
guaranteed by the theory, the designed observer is
able to provide the correct estimate of the state.
Moreover, based on (17) we can provide a bound
on the decrease of the squared estimation error.
This is indicated by the dashed line in figure 6.

6. CONCLUSIONS

In this paper we consider an observer design for
Lur’e type systems with maximal monotone multi-
valued mappings in the feedback path. In contrast
with the previous work on nonlinear observer de-
sign, the considered class of systems in nonsmooth
and the standard theory does not apply. Even
the existence and uniqueness of solutions is not
a priori guaranteed.



Fig. 5. Responses of the system (solid) and the observer
(dashed): z1 (upper), z2 (in the middle), x3 (lower)
under the constant input voltage

\
o 200
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0 1 2 3 4
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Fig. 6. The norm of the estimation error(solid) and the
envelope of the error norm (17) (dashed)

We proposed an observer structure, together with
a constructive design method. The approach taken
in the paper is based on rendering the linear
part of the observation error dynamics SPR, by
choosing appropriate observer gains. Under the
natural assumption that the observed system has
a solution, and that the control input belongs to
a certain admissible class, it is shown that there
exists a unique solution for the estimated state,
and that the observer recovers the state of the
original system asymptotically. The relevance and
applicability of the presented results is demon-
strated on the example of the drilling system.

Future work will mainly investigate the issue of
existence of strong solutions for the proposed
observer.
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