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Abstract: The application of NPID, or nonlinear PID, control is demonstrated
experimentally on an optical storage playback device (CD drive) for automotive
applications. The nonlinear design aims at improved shock suppression under
equal noise response. This is done by introducing variable controller gains. Namely
under large levels of low-frequency vibration, the controller gains are increased as
to improve low-frequency sensitivity. High-frequency sensitivity, however, remains
unaltered as to keep a low-level noise response. Copyright c© 2005 IFAC
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1. INTRODUCTION

Nonlinear control techniques in motion control
systems exposed to a wide but generally unknown
range of disturbances often lack a significant level
of industrial application. In terms of additional
control design freedom, this is surprising given
the potential of nonlinear control schemes applied
to generally linear systems like optical storage
drives, see also Yokoyama, et al. (1994). Typically
in portable or automotive applications, additional
control design freedom can be used to improve
performance under vibration, e.g. road or engine
excitation, but not to deteriorate noise response
in the presence of disc scratches or fingerprints.
To this end, a nonlinear control scheme based on
NPID control is proposed.

NPID control refers to variable controller gains
in a PID-based controller structure, see for ex-

ample Armstrong, et al. (2001). In this paper, a
controller scheme is presented where the controller
gains related to the integral part are increased be-
yond a pre-defined level for the servo error signals.
By doing so, large error signals induced by large
levels of vibration are handled more effectively
under equal noise response. In the absence of vi-
brations, small error signals induce no increase in
controller gains and therefore are handled equally
effective. In terms of design limitations, improved
disturbance rejection is temporarily balanced with
deteriorated stability margins.

For the purpose of organization, first the NPID
control design is presented within the framework
of absolute stability theory. Second the imple-
mentation of this design on a CD drive is dis-
cussed. Third, a performance analysis is presented
via measurement under vibration or disc defects.
Fourth, an epilogue is given.



2. NPID CONTROL DESIGN

The NPID control scheme such as proposed in this
paper refers to the servo control of an objective
lens in radial direction, see Fig. 1. In this section,

@
@

@R

��� ��� � �������	 �
� ������ ��	


m�
�

�
�

Fig. 1. Bare CD drive.

first the lens dynamics in radial direction are con-
sidered, second, the controller design is discussed
in terms of nonlinear dynamic filtering, third the
nonlinear closed loop dynamics are presented,
and, fourth, stability of these nonlinear dynamics
are studied in terms of absolute stability.

2.1 Objective lens dynamics

The uncontrolled objective lens dynamics are
based on a simple model of the plant P, or

P (s) =
ωlp,1

(m s2+ b s+ k)(s+ ωlp,1)
, (1)

with s ∈ C the Laplace variable. The first
part of this model contains the objective lens
mass m= 1.5 10−4 kg along with the mechanical
properties of the lens support, i.e. damping b=
2.2 10−2 N.s.m−1, and stiffness k= 21.3 N.m−1.
The second part represents a first order low-pass
filter with ωlp,1≈ 6.2 104 rad.s−1. This is related to
actuator inductance in the transfer from voltage
to current; see also Bittanti et al. (2002).

2.2 NPID controller

Based on radial error measurement, the objective
lens dynamics are controlled using a NPID con-
troller. That is, a PID-based filter C1 having a
constant gain in parallel connection with a PI-
based filter C2 having a variable gain φ. The
choice for the controller structure, in particular
the choice for the variable gain part, is driven
by nonlinear closed loop stability. This will be
motivated in terms of absolute stability theory.
But first, the NPID control scheme is considered.

2.2.1. Constant gain PID-based filter The con-
stant gain PID-based filter C1 is given by

C1 (s) = kp (PI (s)+ PD (s)) LP (s), (2a)

with kp= 2.7 103 Nm−1 the radial loop gain, PI a
lag filter defined by

PI (s) =
γ ωlag

s+ ωlag

, (2b)

with γ = 20 and ωlag= 8.4 101 rad.s−1, a lead
filter given by

PD (s) = 1 +
s

ωd

, (2c)

with ωd= 1.9 103 rad.s−1, and a second order low-
pass filter given by

LP (s) =
ωlp,2

2

s2 + 2β ωlp,2 s+ ωlp,2
2
, (2d)

with ωlp,2= 4.4 104 rad.s−1 and β = 1.1.

2.2.2. Variable gain PI-based filter The variable
gain PI-based filter represents a series connection
of a nonlinear part φ and a linear part C2, of which
φ is given in time-domain by

φ(er(t)) =

{

αε(er(t))(1 − δ/|er(t)|), if |er(t)| > δ,

0, if |er(t)| ≤ δ,

(3a)
with

ε(er(t)) =

{

1, if |er(t)| ≥ δ,

0, if |er(t)| < δ,
(3b)

α > 0 representing a limit value for the variable
gain and δ a dead zone length, see Fig. 2, whereas
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Fig. 2. Graphical representation of inequality (3a).

C2 is given in frequency domain by

C2 (s) = kpN (s) PI (s) LP (s), (4a)

with

N (s) =
s2 + 2β1 ωn,1 s+ ωn,1

2

s2 + 2β2 ωn,1 s+ ωn,1
2
, (4b)

representing a notch filter with ωn,1≈ 1741 rad.s−1,
β1 = 0.2, and β2 = 4.1. In terms of nonlinear
closed loop stability, N is designed to enable large
values for α. This will be explained hereafter.



2.3 Nonlinear closed loop lens dynamics

The nonlinear closed loop lens dynamics are de-
picted in Fig. 3 in block diagram representation.
It can be seen that the radial error signal er being
the difference between reference r and objective
lens position output yr forms the input to both
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Fig. 3. Nonlinear closed loop lens dynamics.

the constant filter C1 and the variable gain φ.

2.4 Absolute stability of the closed loop

Absolute stability of the nonlinear closed loop lens
dynamics are studied using

Sc (s) =
C2 (s) P (s)

1+ C1 (s) P (s)
. (5)

That is, given a class of nonlinearities, stability of
the nonlinear feedback connection boils down to
Lyapunov stability of the stable linear closed loop
dynamics Sc under nonlinear perturbation; see
for example Leonov, et al. (1996) for conditions
imposing stability.

For the considered closed loop lens dynamics,
absolute stability is guaranteed if

<{Sc (jω)} > −
1

α
, 0 ≤ ω ≤ ∞. (6)

The graphical interpretation of this inequality is
shown in Fig. 4. It requires that Sc remains to
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Fig. 4. Graphical interpretation of inequality (6).

the right of a vertical line through the point
(−1/α, 0) which is satisfied for values α < 21.9.
In terms of improved shock suppression, this offers
the possibility of having additional low-frequency
disturbance rejection (≤ 27.2 dB) resulting from
increased controller gain 1 + α.

3. IMPLEMENTATION ASPECTS

Regarding the proposed nonlinear control scheme,
implementation aspects are presented by consid-
ering, first, the experimental environment, second,
the need for down sampling given a discrete-time
controller representation, and, third, a brief model
validation by means of measurement.

3.1 Experimental environment

Apart from issues like data acquisition and pro-
cessing, the experimental environment mainly
concerns the experimental setup and the discrete-
time controller implementation.

3.1.1. Experimental setup The setup is depicted
in Fig. 5. It consists of a bare CD drive, an

Fig. 5. Experimental setup.

interface to flash (compiled) source code into the
micro controller, an interface to adapt the con-
troller parameters once flashed and to designate
desired servo signals, an IO-board for monitoring
these signals and providing the means to inject
noise in the servo loop, and a SigLab/MatLab
combination for signal processing and generation.

3.1.2. Discrete-time controller implementation
The controller is implemented in discrete time
on a DSP chip. To deal with word-size effects in
the filter parameters under 16-bit conversion, a
parallel configuration is used. That is, the filters
PD and LP are evaluated at a sampling frequency
of fs = 90 kHz whereas the filters PI and N are
evaluated at a down-sampled frequency of 5625
Hz, hence one sixteenth of fs.

3.2 Down sampling

To illustrate the need for down sampling to im-
prove the controller implementation, the discrete
implementation of the notch filter N, see Eq. (4b),
is considered in z-domain, or

N (z) =
b0 + 2b1z

−1 + b2z
−2

1 + 2a1z−1 + a2z−2
, (7)

see Table 1 for the coefficients.



Table 1. Digital notch filter coefficients.

Coefficients fs/16 = 5625 Hz fs = 90 kHz

b0 0.4718 0.9300

b1 -0.4235 -0.9263

b2 0.4176 0.9229

a1 -0.4235 -0.9263

a2 -0.1107 0.8530

Given a sampling frequency of fs = 90 kHz, it
can be seen that the coefficients tend to one,
a process that continues for increasing fs. For a
16-bit conversion in a fixed interval between [-
1,1], this induces steady-state output error due
to word-size effects in the coefficients, the so-
called coefficient quantization error, see Fig. 6.
As a consequence, the discrete filter does not
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Fig. 6. Bode diagrams of the notch filter in
continuous-time simulation and discrete-time
implementation. The latter with fs = 90 kHz
and down sampled to 5625 Hz, respectively.

show the desired low-frequency behavior, hence
the kind of behavior for which it is designed to
achieve nonlinear stability and performance. By
down sampling of the notch filter input (but also
the lag filter input) to fs/16 = 5625 Hz, the
low-frequency behavior is significantly improved;
see Table 1 for the coefficients. But now the
high frequency behavior is affected. This, however,
has no consequences for the overall controller
performance because N is used in series with PI
which has no significant contribution in the high-
frequency range; see Eq. (4a).

Besides improved controller implementation, down
sampling is used to pre-filter the radial error sig-
nal. Namely information is still available on a time
scale dictated by the sampling frequency fs = 90
kHz. By taking the average input value over 16
time samples, high-frequency noise is filtered out.

3.3 Model validation in the presence of time delay

To validate the continuous-time model assump-
tions, it is important to realize that the implemen-
tation features several expressions of time delay.

An example of which is given by the controller
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Fig. 7. Bode diagrams of controller transfers with
time delay Tdelay = 1/(2fs).

characteristics C1 (jω) such as depicted in Fig. 7.
Here the measured frequency response is based
on an input, i.e. the radial error signal, which
is monitored as a digital signal and which is
converted to the analogue domain via electronic
means. The output, however, is monitored directly
as an analogue signal. As a consequence, it can be
seen that a time delay of Tdelay = 1/(2fs) seconds
occurs between measurement and simulation.

Another example of time delay is given by the
open loop characteristics, see Fig. 8 where a time
delay of Tdelay = 2/fs seconds is needed to correct
the simulations for a proper resemblance with
the measurements. The occurrence of time delay
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Fig. 8. Bode diagrams of open loop transfers show-
ing a bandwidth of 1.4 kHz, phase margin of
35 degrees, and gain margin of 7.5 dB.

in the implementation has minor impact on the
nonlinear closed loop stability result and therefore
is neglected in the nonlinear control design.

Apart from time delay, it can be seen in Fig. 8 that
below 10 kHz, the sampling frequency of 90 kHz



enables a sufficient match between the continuous-
time model and the discrete-time implementation.
Below 150 Hz, however, a poor measurement qual-
ity is obtained due to the disturbance rejection
properties of the control design, hence all mea-
surements are done under closed loop conditions.

4. PERFORMANCE ASSESSMENT

Performance of the nonlinear control design is
assessed (with α = 10), first, regarding its steady-
state behavior under vibration and, second, re-
garding its transient behavior under disc defects.

4.1 Performance under vibration

To quantify performance under vibration - for au-
tomotive applications typically having frequency
contents in the range between 10 and 200 Hz - the
nonlinear system response is studied at various
levels of harmonic excitation. Herein the parame-
ter ∆ = δ/ξ being the ratio between the dead zone
length and the amplitude of excitation is used to
characterize shock dependency.

4.1.1. Time-series servo error measurement Fig.
9 shows measured time-series shifted in time of
the scaled radial error signal under different levels
of disturbance. That is, the periodic radial error
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Fig. 9. Time-series measurements (averaged) for
φ = 0, φ = 10, and ∆1 and ∆2 = ∆1/2 .

response scaled with the amplitude of a 20 Hz har-
monic excitation force, the latter being applied to
the objective lens mass. Clearly the control design
possesses shock dependency. For small enough am-
plitudes of excitation, the radial error signals do
not exceed the dead zone length giving the low
gain linear response φ = 0. For increased levels of
disturbance (indicated with ∆1 and ∆2 = ∆1/2)
the dead zone length is exceeded which reduces
the response in amplitude and which ultimately
induces the high gain linear limit φ = 10.

4.1.2. Nonlinear sensitivity measurement Shock
dependency in a broader frequency range is stud-
ied in the nonlinear process sensitivity amplitude
characteristics of Fig. 10. For the linear limit sit-
uations of low gain versus high gain, respectively,
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Fig. 10. Process sensitivity analysis for φ = 0, φ =
10, and ∆1 and ∆2; measurements together
with simulations.

this boils down to the frequency radial error re-
sponse under force excitation which is given both
measured and simulated. For the intermediate lev-
els of disturbance indicated with ∆1 and ∆2, the
nonlinear frequency response representation is ob-
tained by depicting the maximum absolute value
of the scaled periodic radial error response at
specific frequencies of harmonic excitation, i.e. the
amplitudes in Fig. 9 (Heertjes & Steinbuch, 2004).

In terms of shock suppression, it can be seen that
large low-frequency vibration is handled more
effectively by the nonlinear control design than
small vibration. At low frequencies up to ≈ 21
dB of improvement is obtained. This is not heav-
ily compromised for at high frequencies, hence
the considered process sensitivity beyond 2 kHz
largely remains unaffected under additional gain.
However open loop stability is affected, the phase
margin drops from 35 degrees in the absence of
variable gain to 22 degrees for the high gain limit.

Though expected to be positively influenced the
relation between improved shock suppression and
low-level noise response versus the ability to
read/write data, expressed for example by the
so-called block error rate, is not immediately de-
duced.

4.2 Performance under disc defects

To evaluate nonlinear performance under disc
defects, two types of artificial defects are studied:
black dots and fingerprints (Vidal et al., 2001).

4.2.1. Black dot measurement A time-series
measurement crossing an 800 µm black dot (grey
interval) is shown in Fig. 11. Three different con-
troller settings are depicted: the original low-gain
limit, the high-gain limit, and a case of variable
gain. During the occurrence of the black dot, the
radial error signals equal zero. Beyond the black
dot, the response only shows marginal differences
in terms of fundamental frequency contribution,
rising time, overshoot, and damping properties.
This is related to the high-frequency sensitiv-
ity properties of the nonlinear control design for
which the system is designed to achieve perfor-
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Fig. 11. Time-series measurement (averaged, α =
10) crossing an 800 µm black dot.

mance, see Fig. 10. For larger values of α, the
differences will be more pronounced.
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Fig. 12. Time-series measurement (averaged, α =
10) crossing a 300 µm black dot.

Similar behavior is shown for the time-series mea-
surements crossing a 300 µm black dot such as
depicted in Fig. 12.

4.2.2. Fingerprint measurement A time-series
measurement crossing a 20 mm artificial finger-
print is shown in Fig. 13. Apart from the con-
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Fig. 13. Time-series measurement (eight times av-
eraged, α = 10) crossing a 20 mm fingerprint.

sidered radial error signals depicted in the lower
part, the focus error signal for the low gain limit
is depicted in the upper part. It can be seen
that the focus error signal is more sensitive to
the fingerprint disturbance than the radial error
signal, a fact that is used to monitor its time of
exposure. For the considered controller settings,
the radial response shows no significant difference.

From both the black dot and fingerprint measure-
ments, it is concluded that the nonlinear control

design does not induce significant performance
deterioration under the considered disc defects,
a fact which certainly does not hold true, for
example, by increasing the overall controller gain.

5. EPILOGUE

As a means to improve linear system performance
by nonlinear control, this paper demonstrated the
possibility of NPID control to obtain improved
shock performance in optical storage drives under
equal noise response. In terms of shock perfor-
mance, the proposed NPID control scheme shows
shock dependency, i.e. the ability to adapt to
different disturbance situations. Hereto a tempo-
rary increase in shock performance is balanced
over a temporary decrease in stability margins. In
terms of noise response, the NPID control design
does not show significant performance deterio-
ration under black dot and artificial fingerprint
disturbance, hence the kind of high-frequency de-
terioration otherwise occurring under increased
overall controller gain, see for example Heertjes
& Steinbuch (2004). This is because the nonlinear
part of the controller does not contribute to the
high-frequency controller output.
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