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Abstract: The paper addresses e¢ cient methods for parameter sensitivity analysis
and ranking in large, nonlinear, mechanistic models requiring examination of many
points in the parameter space. The paper shows how orthogonal decomposition and
permutation of the sensitivity derivative is an intuitive and structured method for
automatic ranking of the parameters within a candidate set. Provided the model
error is Gaussian, and with the problem on a triangularized form, the additional
variance associated with each parameter can easily be found. Ranking according
to additional variance is therefore another option. The methods are tested on an
industrially used simulator model. Copyright c
 IFAC 2005
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1. INTRODUCTION

Analysis of the sensitivity derivative of a model
is a necessary step when designing model based
parameter estimation algorithms. This paper ad-
dresses methods for e¢ cient manual and auto-
mated sensitivity analysis for nonlinear models on
the general form

ŷ = g(�; u)

where ŷ 2 Rny is the model output vector, � 2 Rn�
the parameter vector and u 2 Rnu is a measured
input vector which may be present in the model.
The sensitivity derivative of the model outputs to
the parameter vector is de�ned as

S =W� 1
2
dŷ(�; u)

d�
2 Rny�n�

1 Supported by NTNU, Elkem and SINTEF

where W� 1
2 is a diagonal weighting matrix. Each

column of the sensitivity derivative will express
one parameter�s sensitivity in all outputs, and can
therefore be viewed as the sensitivity direction for
the corresponding parameter.

The focus in this paper is on situations when the
sensitivity derivative is on numerical form, as op-
posed to situations when an analytical expression
for S can be found. Since the model is nonlinear,
global identi�ability can generally not be proven.
To increase the probability that the model is
identi�able over the whole parameter space, the
sensitivity derivative must be checked for as many
parameter vector values as possible. If the model
is also nonlinear in the input vector u, then u will
a¤ect the sensitivity derivative, and S needs to
be calculated for a wide range of values of u as
well. This requires e¢ cient automated sensitivity
analysis methods.



In sensitivity analysis, the following properties of
the sensitivity derivative are of interest:

� Many large values in a column are an indica-
tion of high sensitivity to the corresponding
parameter.

� Large di¤erences in the norms of the columns
indicate large di¤erences in sensitivity or
poor scaling.

� Degree of linear dependence between columns

Many linear transformations of S or S0S will
reveal these properties. A search into relevant
literature databases covering the control engineer-
ing domain verify that eigenvector transformation
of S0S is the most commonly used method. Eigen-
vector transformation can be used for manual pa-
rameter ranking through ordering the eigenvalues
of S0S according to size, and inspecting the cor-
responding eigenvectors to determine which pa-
rameters are the most signi�cant contributors to
this particular direction. Generally this may not
be a trivial task since the eigenvector decomposi-
tion produces linear combinations of the original
directions of the problem (columns of S):

A large condition number, � =
q

max eig(S0S)
min eig(S0S) ; in-

dicates either weak individual sensitivity or linear
dependence within S. Eigenvalue transformation
can therefore be used for automatic ranking of
the parameters, by removing (combinations of)
columns from S and calculate the condition num-
ber of the corresponding sub-matrices of S0S. As
an automated method this will give a trial and
error method.

An alternative method for automatic ranking pro-
posed in this paper utilizes the original direc-
tions of S, and reduces the column space of S
into an orthogonal set of vectors in a successive
manner. This provides an intuitive and structured
way of ranking the parameters and is carried out
as follows. From the non-selected set of columns
in S, select the column with the highest norm,
form a unit vector, and remove this direction (by
projection and subtraction) from the non selected
set of columns. The procedure is repeated until
all columns have been selected. The order of se-
lection is stored in a permutation matrix. This
economical QR decomposition with permutation
of the sensitivity derivative will give a triangular
form of S0S: The same form can be found by LDL0

decomposition and permutation of S0S: Successive
orthogonalization with permutation is described
by example in section 3 of this paper.

If the deviation between the actual and simu-
lated output vectors, i.e. the model error " =
y � ŷ(�); can be assumed to be a stochastic
process with Gaussian properties, then tr(S0S)�1

gives an estimate of the lower limit of the para-
meter covariance (Söderström and Stoica 1989).

(Berntsen 1977) showed that if S0S is already on
a triangular form, a particularly easy form of the
individual variance contribution of each parame-
ter can be found, see section 4. This can be applied
to an already ordered set of parameters or used as
another method to rank the parameters.

Manual inspection of S0S can in simple cases
give su¢ cient information to rank the parame-
ters. Manual inspection is however also useful in
more complex cases to gain initial insight into
important features of the problem, and provide
a basis to understand or second-guess the ranking
done by automated procedures. A transformation
of S0S which is particularly useful for manual
inspection is presented in section 2.

All three methods have been applied to an exam-
ple 21� 6 sensitivity derivative in section 5. Man-
ual inspection has been used initially to reveal the
most important properties of the example matrix.
Next, the parameters have been ranked through
successive orthogonalization and by smallest ad-
ditional variance. The methods have also been
applied to a larger, industrial example, and the
results of this analysis have been summarized in
section 6. Conclusions are given in section 7.

2. MANUAL INSPECTION OF S0S

In the following a transformation of S0S giving
a particularly useful form for manual inspection,
is demonstrated. The following is valid for any
sensitivity derivative S with dimension ny � n�;
ny � n�; but for pedagogical reasons, an ny �
3 matrix, S =

�
a b c

�
; is used. a; b; c are the

column vectors:

Cross multiplication of S gives

S0S =

24 kak2 ha; bi ha; cihb; ai kbk2 hb; ci
hc; ai hc; bi kck2

35
where h�; �i denotes the inner product and k�k the
Euclidian norm of a vector. The squared norms
on the diagonal give a measure of the total sen-
sitivity of each individual parameter. Large inner
products in the o¤diagonal elements indicate that
the two vectors have large elements in the same
places (linear dependence), and/or a large norm of
the vectors involved. To separate the information
about the impact of each individual parameter
from the information about linear dependence,
the norms (S(i; i) > 0) are extracted and S0S to
written on the form shown in equation (1).

In (1) the �rst and last matrices contain informa-
tion about the "strength" of each parameter, as
sensitivity vector length. The o¤ diagonal terms
of the middle matrix can be recognized from the



S0S = D0CD =

"
kak 0 0
0 kbk 0
0 0 kck

#26664
1

ha; bi
kak kbk

ha; ci
kuk kwk

hb; ai
kbk kak

1
hb; ci
kbk kck

hc; ai
kck kak

hc; bi
kck kbk

1

37775
"
kak 0 0
0 kbk 0
0 0 kck

#
(1)

Cauchy Schwarz inequality, provided kxk ; kyk ; >
0; then

�1 � hx; yi
kxk kyk � 1 (2)

(2) can in R2 be recognized as the cosine of the
angle between the vectors. Strong linear depen-
dence gives values close to �1 or 1; whereas near
orthogonality gives values close to zero.

The condition number of the middle matrix in
(1) is known as "collinearity index", see (Brun et
al. 2000) and (Belsley 1991). (Brun et al. 2000)
uses the collinearity index for reduction of the
parameter set. He removes columns and combi-
nations of columns from S and calculates the
corresponding collinearity index. This is combined
with inspection of di¤erent norms of the columns
of the sensitivity derivative in order to decide on
which parameter set to use. A similar analysis was
also made in a very initial stage of this the iden-
ti�cation problem design, see (Lund et al. 2004).
The method is however largely manual, and not
very well suited for analysis of a large number of
sensitivity derivative matrices.

3. RANKING USING
ORTHOGONALIZATION OF S

In the following parameter ranking is made utiliz-
ing the directions already present in the sensitivity
derivative S: S is as de�ned in section 2.

Assume vector a has the largest norm and there-
fore corresponds to the parameter having the
largest overall sensitivity. This direction is cho-
sen, and a unit vector, q1 = a

kak , is formed and
removed from b and c by projection onto q1 and
subtraction, giving

eb= b� q01b

q01q1
q1 = b� (q01b)q1

ec= c� (q01c)q1eb and ec are now orthogonal to q1: Next, the vector
out of eb and ec with the largest norm is selected.
Assuming b originally was pointing in nearly the
same direction as a; then a large component was
subtracted from b when forming eb: Assume for
now that ec has the larger norm, and therefore
is selected as the second unit vector, q2 = ec

keck .
The q2 direction is removed from vectors of the

remaining set, which is now only eb, to form the
new vector �b

�b = eb� (q02eb)q2
and set q3 =

�b

k�bk : The above example can be
summarized into the expression SE = QR

S

24 1 0 00 0 1
0 1 0

35=
24 q1 q2 q3

3524 q01a q01c q01b0 q02c q
0
2b

0 0 q03b

35
where S is ny � 3; with ny � 3 . E is a 3 � 3
permutation matrix. Q is an orthonormal ny �
3 and R is an upper triangular 3 � 3 matrix.
The procedure can be characterized as "economy"
QR decomposition with permutation. The term
"economy" is used since full QR decomposition
produces a full ny � ny Q-matrix, and ny � n�
R-matrix. The order of selection of the vectors is
expressed by the permutation matrix.

The parameters have now been selected according
to their strength in linearly independent direc-
tions. The main advantage of this method is that
is utilizes the directions already present in the sen-
sitivity derivative, and that the method provides
a structured order of selection as opposed to trial
and error methods.

The result can be further re�ned by extracting
the diagonal of R , R = D �R and �nd the cross
product E0S0SE

E0S0SE = R
0
D0Q0QDR = R

0
D2R

since Q0Q = I, and D0D = D2. The expression
now has the triangularized form

E0S0SE =

266664
1 0 0
q01c

q01a
1 0

q01b

q01a

q02b

q02c
1

377775D2

266664
1
q01c

q01a

q01b

q01a

0 1
q02b

q02c
0 0 1

377775 (3)

with

D2 =

24 (q01a)2 0 0

0 (q02c)
2
0

0 0 (q03b)
2

35
The elements of D contain the squared lengths of
the orthogonal fractions of the original sensitivity
vectors.

LU (LDL0) decomposition on S0S with permuta-
tion to maximize the norm of the diagonal ele-
ments in each step, will give the same result as in
(3).



4. RANKING ACCORDING TO MINIMUM
PARAMETER VARIANCE

In the following it is shown that a simple expres-
sion for the individual variance contribution of
each parameter can be found if S0S is on trian-
gular form.

The Cramer Rao lower bound (Ljung 1999) states
that for any unbiased estimator �̂ of �

cov�̂ �M�1

where M is the Fisher information matrix. As-
suming the model error " = y � ŷ(�̂N ); with
"; y 2 Rny ; is stochastic with Gaussian properties
and covariance W , then the Fisher information
matrix is

M =

�
d"

d�

�0
W�1

�
d"

d�

�
Then d"

d� = �
dŷ(�)
d� and

M =

"
dŷ(�̂)

d�

#0
W�1 dŷ(�̂)

d�
= S0S

An estimate of the variance lower bound is then

var�̂ � tr(S0S)�1

If S0S has been triangularized, and U = ( �R�1)0

then

(S0S)
�1
= ( �R0D2 �R)�1 = UD�2U 0

Selecting a subset � 2 � consisting of the parame-
ters 1 through p, p � n�; gives the variance

var(�p) =

pX
i=1

kuik2

d2i

where ui is column i in U . Again, a simple example
is used to determine the increase in variance
going from 2 to 3 parameters. If U2 is a 2 � 2
lower triangular matrix with a unit diagonal, then
var(�2) = tr(U2D

�2
2 U 02) is

var(�2) = tr

�
1 a
0 1

�264
1

d21
0

0
1

d22

375� 1 0a 1
�

= tr

2664
�
1

d21
+
a2

d22

�
(
a

d22
)

(
a

d22
) (

1

d22
)

3775 = 1

d21
+
a2

d22
+
1

d22

Expanding with a third parameter gives var(�3) =
tr(U3D

�2
3 U 03)

tr

24 1 a b0 1 c
0 0 1

35
2666664
1

d21
0 0

0
1

d22
0

0 0
1

d23

3777775
24 1 0 0a 1 0
b c 1

35

=
1

d21
+
a2

d22
+
b2

d23
+
1

d22
+
c2

d23
+
1

d23

= var(�2) +
u03u3
d23

where u3 is the third column added to form U3
from U2: Generally (Berntsen 1977)

var(�p+1) = var(�p) +
kup+1k2

d2p+1
(4)

where kup+1k2
d2
p+1

is an expression for the additional

variance introduced to the total variance when
adding parameter p+ 1 to the set.

The parameters can therefore be ordered accord-
ing to minimum additional variance, and the order
of selection can be represented by a permutation
matrix, Ev giving the expression

E0v (S
0S)

�1
Ev = UD

�2U 0

5. EXAMPLE

The case used here is the sensitivity derivative
from a nonlinear, dynamic model representing the
mass transport, chemical reactions and thermo-
dynamic phenomena of a submerged arc silicon
furnace (Foss and Wasbø 2001). The model is
a di¤erential algebraic equation system, and is
called Simod.

Most of the candidate parameters express uncer-
tainties associated with the inputs and the energy
distribution to the furnace. These parameters can
also be viewed as process disturbances.

The sensitivity derivative, S; has been obtained
using a central di¤erence approximation, therefore
each element sij in S is

sij=
1

w
1
2
i

� dŷi
d�j

� 1

w
1
2
i

� ŷi(�j +��j)� ŷi(�j ���j)
2��j

��j is the perturbation interval for �j which is
the parameter value of element j in the parameter

vector �: w
1
2
i is the standard deviation of the noise

of the i�th element of the actual output vector.
The reason for including this standard deviation
is to avoid giving a high score to model outputs
which correspond to noisy, actual outputs. It is
paramount that dŷ

d� is scaled according to the
natural variation range of the parameters and the
outputs as well.



Since global identi�ability generally can not be
proven for the nonlinear model, sensitivity analy-
sis should be done for as many parameter vec-
tor values as possible. For demonstration of the
methods presented in the paper, only one parame-
ter vector, � =

�
0:2 0:6 13:7 0:03 0:92 0:1

�
; has

been used. The scaled sensitivity derivative at this
parameter vector value is S =2666666666666666666666666666666666666664

�2:204 �0:08309 �0:4096 0:03563 0:07694 �0:7551

�1:716 �0:2744 �5:494 0:3501 0:1312 0:6418

�0:3569 �0:1394 2:019 0:04123 �0:02163 �0:2508

�2:159 �0:02855 �0:3459 0:02090 0:04908 �0:6824

�1:243 0:5462 �3:950 �0:7891 0:8500 �0:1928

�0:3501 �0:1438 1:987 0:05719 �0:01304 �0:2590

�2:044 �0:1289 �0:4124 0:03348 0:05143 �0:8040

�0:9978 �1:964 �9:796 �0:5977 0:1140 �1:310

�0:3907 0:1841 3:203 �0:1114 �0:001869 �0:2088

�2:168 �0:04300 �0:1918 �0:007997 0:02347 �0:8847

�1:681 0:2567 �6:478 0:4334 �0:7772 �0:3600

�0:3444 0:07747 2:691 �0:04052 0:002749 �0:1569

�2:224 �0:05802 �0:3568 0:03075 0:01231 �0:9006

�1:764 0:2127 �5:409 �0:01474 �0:7880 �0:7065

�0:3106 �0:04527 2:255 0:04534 0:01331 �0:1017

�2:270 �0:08749 �0:4579 0:05717 0:02911 �0:8137

�1:032 0:6817 �6:628 0:3682 �0:5508 �0:3650

�0:3482 �0:004523 2:392 �0:003359 0:006071 �0:1333

�2:299 �0:04337 �0:2732 0:01182 0:03450 �0:7782

�1:264 �0:1179 �5:955 �0:2546 0:2906 �0:2511

�0:4098 �0:03964 2:458 �0:02861 0:008653 �0:1884

3777777777777777777777777777777777777775
The cross product on the form (1) is �rst inspected
manually. Next the parameters are ranked accord-
ing to highest squared norm of the orthogonal
directions, and according to smallest additional
variance.

5.1 Analysis by manual inspection of S0S

Transformation of S0S to the form (1), gives for
D =

diag[ 7:0 2:223 18:320 1:233 1:54 2:792 ] (5)

and C =2666666666664

1:0 0:093 0:454 �0:020 0:084 0:810

0:093 1:0 0:298 0:358 �0:172 0:362

0:454 0:298 1:0 0:136 0:209 0:370

�0:020 0:358 0:136 1:0 �0:677 0:234

0:084 �0:172 0:209 �0:677 1:0 0:122

0:810 0:361 0:371 0:234 0:122 1:0

3777777777775
By inspection of D, the third parameter shows
the highest individual sensitivity. This parameter
also has relatively little linear dependence with
the other parameters. The second parameter can
therefore most likely be selected independently of

the �rst, and parameter 1 is a likely candidate
since it has second largest element in D: From
this point on, manual selection is di¢ cult. C1;6
indicates that there is a relatively strong linear
dependence between parameters 1 and 6. D6;6
has approximately the same size as D2;2; and
with the linear dependence between 6 and 1, it
is di¢ cult to know if parameter 2 or parameter 6
is the third choice. Also, element C4;5 indicates
that there is some degree of linear dependence
between the corresponding parameters. From this
the conclusion is that parameters 3 and 1 most
likely are the �rst choices. As the third choice,
parameter either 2 or 6 is the most likely choice.
Parameter 5 may be a choice before 4, but this is
uncertain.

5.2 Successive orthogonalization of S0S

In the successive orthogonalization of S the QR-
function of Matlab has been used, running it
in "economy" mode. Negative elements on the
diagonal of R have been corrected in R and
Q: Ranking order when determined according to
maximum orthogonal length is 3; 1; 2; 5; 6; 4: The
ranking order is expressed in the permutation
matrix in E: The corresponding values of D2 =

diag
�
335:6 38:7 4:49 2:13 1:84 0:28

�
(6)

It is interesting to compare the values of (6) with
the values of (5); squared and ordered according
to the ranking caused by the orthogonalization.
Due to the orthogonalization, only the �rst chosen
direction will have the same squared norm in
both cases, the others will have a more or less
reduced norm depending on the degree of linear
dependence with already chosen directions.

5.3 Ranking by smallest additional variance

Ranking by minimum additional variance gives
the same order as with successive orthogonaliza-
tion, 3; 1; 2; 5; 6; 4. The corresponding, additional
variance contribution of each parameter according
to D�2diag(UU

0
) in (4) are

diag
�
0:003 0:027 0:223 0:489 0:745 6:048

�
(7)

Total variance of the set increases 9 times going
from 1 to 2, or from 2 to 3 parameters. From 3
to four, or four to �ve, variance approximately
doubles. From 5 to 6, the total variance is dom-
inated by the contribution from the last selected
parameter. The last parameter added to the set is
parameter 4, which in the inspection of the cross
product revealed a low individual sensitivity as
well as common directions with other parameters.
The results are therefore consistent with the man-
ual inspection.



5.4 Application to a larger example

A more extensive sensitivity analysis of the can-
didate parameters of the Simod model was per-
formed, using the successive orthogonalization
and smallest additional variance methods. The
sensitivity derivative was obtained in a sliding
window fashion. Assuming a window of N time
instants, the sensitivity derivative at time t is
formed by stacking the outputs registered from
time (t � N + 1) to t: In the Simod case, 3 out-
puts are registered at each time instant. Using a
window of N = 7, with n� = 6, each sensitivity
derivative will have the dimension 21� 6:

The sensitivity derivative was obtained by pertur-
bation around 6 di¤erent values of the � vector.
A total of 220 time instants of the real process
input vector, u, were used. For N = 7; a total of
1290 evaluations of the sensitivity derivative were
made. In 230 cases (18%) the two methods gave a
di¤erent ranking of the parameters. The longer
windows, N = 20 and N = 50, gave di¤erent
ranking in 25% and 31% of the cases respectively.

Since analysis was made over such a high number
of sensitivity derivatives matrices, a mean rank-
ing with corresponding variance was calculated
for both methods. The mean ranking generally
ordered the parameters the same way. The inter-
nal ranking of the parameters varied somewhat
depending on N , and also on the value of �. With
respect to the properties of the parameter set,
the conclusion still was that the parameter set
can be divided into a "good" half consisting of
parameters 3, 1 and 2 all giving a low additional
variance. The parameters of the "less good" half,
parameters 4, 5 and 6, generally add a higher
variance when included in the set.

6. CONCLUSION

When parameters in a mechanistic model are cho-
sen as candidates for estimation, the choices are
based on model and process knowledge. Therefore,
complete linear dependence between sensitivity
vectors or zero sensitivity in certain parameters is
seldom experienced, and the sensitivity derivative
will have full rank. Yet one may still consider if it
is worth-while identifying the full set of parame-
ters. Ranking methods are therefore important,
and automatic ranking methods even more so if
the parameter vector is large or if a large number
of parameter values need to be examined. The
paper has indicated how successive orthogonal-
ization of the sensitivity derivative can be used
e¢ ciently to determine parameter ranking auto-
matically. The method uses the directions already
present in the sensitivity derivative, as opposed to
eigenvector transformation which generates linear

combinations of the original directions. If the in-
novations are Gaussian, the parameters can also
be ranked according to individual variance con-
tributions. If the cross product of the sensitiv-
ity derivative is on a triangular form, the addi-
tional variance calculations become particularly
easy. The methods are demonstrated on a small
example in the paper and a summary of a larger
example is given. The larger example shows that
the mean ranking of the methods give the same
parameter selection order, although for individual
calculations, the parameters were also ranked dif-
ferently. A particularly useful transformation for
manual inspection of S0S was also demonstrated.
This transformation also utilizes the original di-
rections of the sensitivity derivative, and separates
the information about sensitivity vector length
from linear dependence information.
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