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Abstract: The objective of this contribution is to discuss three basic control design
methods for disturbance rejection. The key idea is to use a simple fixed continuous
time noise model as a design variable to specify the desirable closed loop properties,
e.g., the closed loop bandwidth. We will study three closely related controller
design methods based on the noise model, namely minimum variance control,
weighted minimum variance control and a loop shaping design procedure proposed
by Skogestad and Postlethwaite. All these methods lead to simple controller
structures, where the transfer function of the input/output relation is the only
unknown part.
The main motivation of this study has been tuning of controllers for disturbance
rejection by means of iterative feedback tuning (IFT). Here, the controller
parameters are found by minimizing a specified cost function using gradient search
techniques. The gradients are estimated using data from iterative experiments.
This is a rather difficult problem if no external input excitation is allowed. Import
factors for good results are the controller parametrization and the choice of cost
function.
We propose an IFT cost function based on a simple output signal weighting tailored
to the fixed noise model controller structure. This leads to robust procedure for
iterative feedback tuning of a controller for disturbance rejection. The approach is
illustrated on a simple example. Copyright c© 2005 IFAC
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1. INTRODUCTION

This paper is motivated by practical experience
using Iterative Feedback Tuning (IFT) for de-
signing controllers for disturbance rejection. The
control performance is measured by a specified
cost function, and the objective is to find the con-
troller that within a given structure minimizes this
cost. This is done by gradient search techniques,

1 Research was partially supported by the Swedish Re-

search Council.

where the gradients are estimated using data from
multiple experiments. See (Hjalmarsson, 2002) for
a thorough overview. IFT works well if it is pos-
sible to use external excitation signals to obtain
reliable gradient estimates. It is, however, more
difficult to use IFT if the only excitation is the
external disturbances, which should be rejected
by the feedback. It is then most important to
have a simple controller structure with as few
free parameters as possible together with a cost



function that reflects the control specifications,
c.f. (Lequin et al., 2003).

We will use continuous time models to describe
the underlying ideas, even if the feedback and
tuning most often are done using sampled data.
The reason is that this makes it easier to present
the basic concepts.

Consider the feedback control system in Fig. 1.
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Fig. 1. Feedback control system.

The transfer function of the system is given by
G(s). The plant input is denoted by u(t), the
output by y(t) and r(t) is the reference signal.The
controller is specified by the transfer function
F (s, ρ), where ρ is the controller parameters to be
determined. The objective of the feedback control
is to reject the additive output disturbance v(t).
We will assume that the reference signal is zero.

The disturbance v(t) is modelled as the output
from a noise filter H(s), excited by the signal
d(t). The transfer function from d(t) to y(t) will
be called the weighted sensitivity function, and
equals

S(s)H(s), S(s) =
1

1 + G(s)F (s)
, (1)

where S(s) is the sensitivity function.

We will make extensive use of the following simple
noise filter model

H(s) =
s + ω0S0

sS0
, ω0, S0 > 0. (2)

The noise filter H(s) behaves as an integrator for
low frequencies, the amplitude of the frequency
response |H(iω)| ≈ 1 at the frequency ω = ω0 and
the high frequency gain is 1/S0. This means that
it is most important to have effective feedback in
the frequency range [0, ω0], but that there also is
high frequency noise. This will avoid large con-
troller gains at high frequencies (differentiation).
The noise model parameters should be viewed as
design variables, where ω0 determines the desired
bandwidth. The choice of S0 is less important, but
should be chosen larger than one.

The control performance will be measured by the
discrete time cost function

J(ρ) =
1

N

N
∑

k=1

[(WT (q)y(kT, ρ))
2

+ λ (∆(q)u(kT, ρ))
2
], (3)

where T is the sampling interval, WT (q) is a dis-
crete time weighting filter and ∆(q) = 1−q−1 the
difference operator. Here q denotes the shift oper-
ator qy(kT ) = y((k + 1)T ). The parameter λ > 0
balances the output regulation with the changes
in the input signal. We have stressed that the
input and output are functions of the controller
parameters ρ. The task is to find the controller
that minimizes the cost function J(ρ). Iterative
Feedback Tuning (IFT) is a method to minimize
such a cost function by using information from
iterative experiments.

The paper is organized as follows. Section 2 dis-
cusses controller design for disturbance rejection.
IFT is then introduced in Section 3, while Section
4 describes how to combine the disturbance re-
jection control design ideas described in Section 2
with IFT to obtain a simple data driven tuning
method. This method is illustrated on a numerical
example in Section 5. Finally, Section 6 concludes
the paper.

2. CONTROLLER DESIGN FOR
DISTURBANCE REJECTION

Next, we will review three simple model based
controller design methods, namely minimum vari-
ance control, weighted minimum variance control
and a loop shaping design procedure.

Assumption: In order to simplify the presenta-
tion we will assume that the transfer function G(s)
is of relative degree one, is asymptotically stable
and is minimum phase (all zeros strictly in the left
half plane).

2.1 Minimum Variance Control

Assume that the input d(t) to the noise filter H(s)
is continuous time white noise, i.e., has constant
power for all frequencies, see e.g. (Åström, 1970).
This is mainly a technical assumption to ob-
tained well-posed continuous time stochastic con-
trol problems. However, since the variance of con-
tinuous time white noise is infinite, one has to be
careful when deriving the continuous time mini-
mum variance control law. By assuming H(∞) 6=
0 (semi-proper) the minimum variance controller
equals

FMV (s) =
1

G(s)

[

H(s)

H(∞)
− 1

]

. (4)

Notice that [H(s)/H(∞) − 1] will be strictly
proper (more poles than zeros). The assumption



that G(s) has relative degree one will guarantee
a proper controller (no direct differentiation of
y(t)). If the relative degree of G(s) is higher than
one, we have to include a low-pass filter in the
controller to make it proper. Possible unstable
poles of G(s) shared by H(s) can also be handled.
The closed loop relation will be y(t) = H(∞)d(t),
i.e., the output will also be white noise.

For the simple noise filter (2)

H(s) =
s + ω0S0

sS0
⇒

H(s)

H(∞)
− 1 =

ω0S0

s
.

Hence, the loop transfer function G(s)FMV (s)
is just an integrator, where the gain determines
the bandwidth. Here, the weighted sensitivity (1)
equals SMV (s)H(s) = 1/S0. The bandwidth of
the sensitivity function SMV (s) will be around
S0ω0. The input size increases with S0, and it
is well known that minimum variance controller
may have poor robustness if the bandwidth is
chosen too high. It should however be noted
that minimum variance control using appropriate
values of S0 gives well behaved controllers. It is
even possible to de-tune the controller by choosing
S0 < 1.

2.2 Weighted Minimum Variance Control

One common way to introduce frequency weight-
ing is to minimize variance of the filtered output,
i.e., the variance of W (s)y(t), where W (s) typi-
cally is a low pass filter. The optimal controller
equals

FWMV (s) =
1

G(s)

[

W (s)H(s)

W (∞)H(∞)
− 1

]

.

The corresponding weighted sensitivity is

SWMV (s)H(s) =
W (∞)H(∞)

W (s)
.

The discrete time version of this approach is
studied from a control performance supervision
perspective in (Horch, 2000), where the use of a
sampled version of the first order filter

W (s) =
1 + s/b

1 + s/µ
, b >> µ,

is proposed. The corresponding discrete time ap-
proach is called de-tuned minimum variance con-
trol in (Åström and Wittenmark, 1995). It should,
however, be noted that frequency weighting gives
more high gain control at low frequencies, since
the low frequency disturbances are further sup-
pressed while the gain of SWMV (s)H(s) for high
frequencies still is H(∞).

2.3 A Loop Shaping Design

Assume that the noise input d(t) is scaled so that
|d(t)| < 1. Let also the output y(t) be scaled in

such a way that the control objective is to make
|y(t)| < 1 for all disturbances |d(t)| < 1. This can
be translated to the frequency domain condition

|S(iω)H(iω)| < 1, ∀ω. (5)

In (Skogestad and Postlethwaite, 1996) the simple
approximate solution G(s)F (s) = H(s) is pro-
posed. The frequency domain condition (5) is then
satisfied at the frequencies where |H(iω)| >> 1.
The controller F (s) = H(s)/G(s) may have to be
modified to increase the gain at low frequencies
and to obtain acceptable phase and gains margins
around the cross-over frequency. See Section 2.6.4
in (Skogestad and Postlethwaite, 1996) for details.
The resulting controller will be of the form

FLS(s) =
1

G(s)
H(s)

s + a

s
FLP (s),

where FLP (s) is a low-pass filter to make the
controller proper. Here it is also assumed that the
zeros of G(s) are in the left-half plane. If this is
not the case, possible ”unstable” zeros have to be
mirrored into the left half plane or omitted when
forming 1/G(s) in the controller. The same holds
for time delays.

For the simple noise model (2) this design gives

SLS(s)H(s) =
s + ω0S0

(S0 + 1)s + ω0S0
.

This transfer function has static gain 1, a pole at
s = −ω0(1 + S0)/S0 and a zero at s = −ω0S0.
A typical value of S0 is 2, which means that
the bandwidth of SLS(s)H(s) will be slightly less
than ω0. This should be compared with the mini-
mum variance controller which gives a bandwidth
around S0ω0. Also here ω0 is the most important
tuning parameter. The purpose of the PI-term
is to obtain better disturbance rejection for low
frequencies. A reasonable choice is a = ω0/5. A
typical bandwidth of FLP (s) is 10ω0.

3. ITERATIVE FEEDBACK TUNING

The gradient of the cost function (3) with respect
to the controller parameters is given by

d

dρ
J(ρ) =

2

N

N
∑

k=1

(

[WT (q)y(kT, ρ)][WT (q)
d

dρ
y(kT, ρ)]

+λ[∆(q)u(kT, ρ)][∆(q)
d

dρ
u(kT, ρ)]

)

.

Consider the controller parameter update

ρ(i + 1) = ρ(i) − γiR
−1(i)

d

dρ
J(ρ(i)),

where γi is the step-length and R(i) is a positive
definite matrix. A good choice is the Hessian
estimate



R(ρ) =

2

N

N
∑

k=1

(

[WT (q)
d

dρ
y(kT, ρ)][WT (q)

d

dρ
y(kT, ρ)]T

+λ[∆(q)
d

dρ
u(kT, ρ)][∆(q)

d

dρ
u(kT, ρ)]T

)

,

which should be modified to R(i) = R(ρi) + δI,
δ > 0, to handle ill-conditioned cases. The step-
length γi is typically around 1.

The main problem is how to find the gradients
d
dρ

y(t, ρ) and d
dρ

u(t, ρ). The key idea of IFT is to
estimate these signals using iterative experiments.

Let u1(t, ρ) and y1(t, ρ) be the input and output
from the feedback system in Fig. 1 with the con-
troller F (ρ) and with reference signal r1(t) = 0.
Now make a first experiment to measure these
signals. Then perform a second experiment with
reference signal r2(t) = −K1y1(t) (where K1 ≥ 1
is a gain factor) and denote the corresponding
input and output by u2(t, ρ) and y2(t, ρ), respec-
tively. We then have

y1(t) =
1

1 + GF (ρ)
v1(t)

y2(t) =
GF (ρ)

1 + GF (ρ)
[−K1y1(t)] +

1

1 + GF (ρ)
v2(t)

=
GF (ρ)

1 + GF (ρ)
[

−K1

1 + GF (ρ)
v1(t)]

+
1

1 + GF (ρ)
v2(t)

≈K1
GF (ρ)

1 + GF (ρ)
[

−1

1 + GF (ρ)
v1(t)]. (6)

The last approximation is based on the assump-
tion that the gain K1 is large enough so that the
v2(t) related noise contribution can be neglected.
Now the gradient (with no reference signal) equals

d

dρ
y1(t, ρ) = −

G d
dρ

F (ρ)

(1 + GF (ρ))2
v1(t)

=

d
dρ

F (ρ)

F (ρ)

GF (ρ)

1 + GF (ρ)

−1

1 + GF (ρ)
v1(t).

Comparing with (6) gives the gradient estimate

d

dρ
y(t, ρ) =

1

K1

d
dρ

F (ρ)

F (ρ)
y2(t, ρ).

The gradient of the input signal can be derived
in a similar way. For a more detailed derivation
taking the stochastic properties of the noise into
account see (Hjalmarsson, 2002).

Our experience is that it is quite difficult to tune
controllers using IFT for disturbance rejection.
The disturbance is the only excitation signal and
the objective of the controller is reject this signal.

In the recent work, (Hildebrand et al., 2004), on
IFT for disturbance rejection, the gain K1 used
in the feedback experiment is optimized so as to
minimize the variance of the gradient estimate
error, subject to power constraints on the signals.
Typically, the cost function (3) is quite insensitive
to the choice of regulator. This is of course good
from a control perspective, but difficult when
tuning the controller.

4. DESIGN ISSUES

When using IFT to tune a controller for distur-
bance rejection it is important:

• To have a simple controller structure with as
few free parameters as possible.

• To have a cost function that gives an opti-
mal controller which satisfies the specifica-
tion without using too large input signals.

Here we have proposed the use the simple noise
model

H(s) =
s + ω0S0

sS0

with the two design parameters ω0 and S0. This
leads to a controller structure of the form

FLS(s) =
1

G(s)
H(s)

s + a

s
FLP (s),

or

FWMV (s) =
1

G(s)
[

W (s)H(s)

[W (∞)H(∞)
− 1]FLP (s),

of which the minimum variance control is a spe-
cial case (W = 1, FLP = 1). Here we also
have to specify the low-pass filter FLP (s) and
the parameters a or µ (which are closely related).
The main unknown part in the controller is the
transfer function G. Hence, it is natural to use
the model parameters of G as controller param-
eters, c.f. indirect adaptive control (Åström and
Wittenmark, 1995). From a control perspective it
is often enough to use very simple models, as first
or second order transfer functions or even just a
gain.

To connect the disturbance rejection control de-
sign with IFT an obvious candidate for cost func-
tion is

J(ρ) =
1

N

N
∑

k=1

[(WT (q)y(kT, ρ))
2

+ λ (∆(q)u(kT, ρ))
2
],

with WT a first order low pass filter with band-
width around ω0. The parameter λ is more diffi-
cult to choose, but reflects the balance between
control performance and input size. Weighted
minimum variance control corresponds to λ = 0.



5. EXAMPLE

Here we will study the properties of the proposed
approach for a very simple example, namely

G(s) =
b

s + 1
, b = 1, H(s) =

s + 2

2s
.

We will assume that only the gain b of the transfer
function is unknown. This is, of course, an over-
simplification, but viewing the model as only a
controller design variable we have fixed everything
in the controller except the gain.

The specifications mean that we need active con-
trol up to around ω0 = 1 rad/s. Introduce K =
1/b, which will correspond to the controller gain.
We will study the three controllers:

FLS(s) =
1

G(s)
H(s)FLP (s)

= K(s + 1)
s + 2

2s

10

s + 10
,

FMV (s) =
1

G(s)
[
H(s)

H(∞)
− 1] =

2K(s + 1)

s
,

FWMV (s) =
1

G(s)
[

W (s)H(s)

W (∞)H(∞)
− 1]

=
K(11s + 20)

s
,

W (s) =
1 + s/10

(1 + s)
,

and the variance and weighted variance costs

J̄MV (K) = E{(y(kT,K))
2
},

J̄WMV (K) = E{(WT (q)y(kT,K))
2
},

where WT is the sampled version of W (s). Notice
that the gain of the weighted minimum variance
controller for low frequencies is a factor of ten
larger than for the two other cases. This is to
further suppress low frequency noise and results
in a larger input signal.

In order to illustrate the properties of the three
controller structures and the two cost functions,
we calculate J̄MV (K) and J̄WMV (K) as functions
of K, with the sampling interval T = 0.01 and
with {d(t)} being white noise with variance 1. The
continuous time transfer functions are approxi-
mated by Euler forward.

In Fig. 2 the variance is plotted as function of the
controller gain K for the three controllers. The
weighted variance cost is given in Fig. 3, and Fig. 4
contains a zoomed version of J̄WMV (K) for the
controller structure FWMV .

In order to evaluate the corresponding input
power, the variance of the delta input signal
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Fig. 2. The variance J̄MV (K) for the three con-
troller structures.
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Fig. 3. The weighted variance J̄WMV (K) for the
three controller structures.
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Fig. 4. Zoomed version of weighted variance
J̄WMV (K) for FWMV (s). Notice the scale of
the y-axis.

J̄u(K) = E{(∆(q)u(kT,K))
2
}

is plotted for the three different controllers as a
function of K in Fig. 5. The input energy is lowest
for the minimum variance controller and highest
for the weighted minimum variance controller as
explained in Section 2.

The overall observation is that all cost functions
are quite flat around the minimum and hence
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Fig. 5. The delta input signal variance J̄u(K) for
the three controller structures.
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Fig. 6. The variance J̄mv(K) for the controller
structure FC = (c1s + c2)/s.

rather difficult to minimize using gradient search.
The good news are that they all are quite robust
to the choice of K. Also notice that all three
controller structures give comparable results.

Next, the variance cost function for the uncon-
strained controller parametrization is plotted in
Fig. 6. It is rather difficult see the details of this
3-dimensional plot. However, the norm of second
derivative (Hessian) of the cost function is a mea-
sure the flatness around the minimum, and is also
directly related the performance of corresponding
numerical optimization techniques. Here the norm
of the inverse Hessian at the minimum equals
2500. Also notice that variance is quite insensitive
to variations in the controller parameters.

6. CONCLUSIONS

The objective of this contribution has been to
study simple controller structures for disturbance
rejection. The work is inspired by industrial appli-
cations of tuning controller for disturbance rejec-
tion using IFT. If the controller should be tuned
on-line using adaptive control or iterative feed-
back tuning, it is most important to have as few
free parameters as possible. It is also important to

be able to predict the performance of the control
system, e.g., for condition monitoring of control
loops.

We have discussed three very simple methods
to design a controller for disturbance rejection.
The designs are based on two user’s choices,
namely ω0 and S0, of which ω0 is the most im-
portant one. The model G(s) of the input output
transfer function is needed to determine the con-
troller. One possibility is to estimate the transfer
function using system identification methods, see
e.g. (Ljung, 1987). An alternative that we have
studied is to use iterative feedback tuning (IFT).
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