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Abstract: A decentralized feedback control scheme is proposed for optimization of
large-scale systems. First, local controllers are used to optimize each subsystem,
ignoring the interconnections. Next, an additional compensating controller was
applied to minimize the effect of interactions and improve the performance of the
overall system. At the cost of the suboptimal performance, this optimization strategy
ensures stability of the system. To account for the modeling uncertainties, both a
local Kalman filter and a novel approach by the usage of genetic algorithm is used to
estimate all local states and interactions for each subsystem.  A sample three-bus
system is given to illustrate the proposed methodologies. Copyright © 2005 IFAC
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1. INTRODUCTION

Most large-scale systems are characterized by a great
multiplicity of controllers. For example, an electric
power system has several control substations, each being
responsible for operation of a portion of the overall
system. This situation arising in a control system is often
referred to as decentralization.

The main motivation behind decentralized control is the
failure of conventional methods of centralized control
theory. Some fundamental techniques such as pole
placement, state feedback, optimal control and state
estimation require complete information from all system
sensors to sake the feedback control. This scheme is
clearly inadequate for feedback control of large-scale
systems. Due to physical configuration and high
dimensionality of such systems, a centralized control is
neither economically feasible nor even necessary.
Therefore, the basic characteristic of any decentralized
system is that the transfer of information from one group
of sensors to others is quite restricted. (Jamshidi, 1997).

The research in large-scale systems control has been so
far directed to applications of decentralized control.
Yang, et al. (1999) designed a decentralized controller
according to the achievement of a sufficient interaction
margin. Wang, et al. (2000) assumed the large scale
power system as a nonlinear system and found an
adaptive robust controller for it. Menniti, et al. (2000)
modeled the power system as an interconnected system
using direct feedback linearization technique and a
decentralized model reference adaptive control was
designed. The authors minimize the interaction effects
and design local adaptive controller for each subsystem.
A completely decentralized load frequency control
scheme was proposed by Rerkpreedapong and Feliachi
(2002), where decentralization was achieved by
developing a model for the interaction variables.

In this paper, first a linearized dynamic model of large-
scale power systems is obtained. Then an optimization
procedure is proposed to design a decentralized
controller. It is shown that the stability of the overall
system is guaranteed. To account for modeling
uncertainties, an estimator is designed to estimate all the



system states. For estimation, a novel approach by the
usage of genetic algorithm is used. The effectiveness of
the proposed controller is demonstrated using a three-bus
test system.

2. DYNAMIC MODEL

The actual dynamic response of a synchronous generator
in the practical power system is very complex and is
very difficult to be dealt with in the controller design,
unless some simplifications are made. It has been
pointed out in (Zhu, et al. ,1998) that the classical third-
order single- axis dynamic generator model can be used
when designing the excitation controller.

2.1 System equations:

For an n-generator power system, the third- order single-
axis dynamic model of the ith generator can be written as
follows. (Note that the system has already been reduced
into a network retaining only generator nodes) (Zhu, et
al. , 1998; Xi, et al., 2003).

(1)

(2)( )

( )[ ])()(1)(

)(1)()(

)()(

''
'

'.

.

.

tIxxtEE
T

tE

tPP
M

t
M
D

t

tt

dididiqifdi
doi

qi

eimi
i

i
i

i
i

ii

−−−=

−+−=

=

ωω

ωδ

(3)

These equations can be written in the following format
in general:

),(
.

uxfx = (4)

Where [ ]''
qiii Ex ωδ=  and [ ]'

fdimi EPu = .
And the Algebraic equations are:
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See (Xi, et al. , 2003) for definition of the symbols used
in the above equations.

2.2 Linearization

It is clear that the utilization of a very detailed model in
the design of controllers is impractical. For this reason,
approximated models and in particular linearized models
have been often used for power systems, See (Kundur,
1994). Here, equation (4) is linearized to give the
following format for every subsystem around the
operating point found by loadflow solution.
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Where Ai , Bi, Gij will be as given below:
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( )nixi Λ1=  is used to show the main subsystem and
( )iexceptnjx j Λ1=  for the subsystems attached

to it.

3. CONTROL SYSTEM DESIGN

A useful approach in designing controllers for a given
state space model, is LQR (linear quadratic regulator). It
is known that the LQR has good gain and phase stability
margins, but an accurate model is needed to enable its
implementation. Here, first local state feedback gains
(Ki) are designed using LQR and then an additional
compensating gain (Kgi) is separately designed to cancel
the effects of the interactions.

3.1 Control design with available states and Interaction
variables

Consider a large-scale linear time-invariant system
described by n subsystems as in (8). Each subsystem has
a goal of finding a “local” controller )(tul

i  which
minimizes an associated cost while satisfying (8)
with

ijG ’s set to zero.
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iJ  is the performance index of the ith subsystem and iQ
and iR  are the corresponding system and input
weighting matrix. Further, it is assumed that each
subsystem pair ( )ii BA ,  is completely controllable. For the
decoupled subsystem,

iiiii uBxAx +=
. ni ...1=   (13)

the decentralized optimal control is given by :
)()()( 1 txKtxSBRtu iiii

T
ii

l
i −=−= − (14)

Where iS  is the symmetric positive-definite solution of
the algebraic matrix Riccati equation.
By using the above controller, each closed-loop
subsystem :

( ) ii
T
iiiii xSBRBAx 1

.
−−= ni ...1=   (15)

is globally exponentially stable with the degree π [9].
Then, the problem is to find a control law :

),()( xtKtu gi
g
i = (16)

to neutralize the interaction effects.

The complete system corresponding to (4) and (8) can be
rewritten as:

GxBuAxx ++=
. (17)

Where A=diag{A1, A2,.., An}, B=diag{B1, B2,…, Bn},
and

( ) ( ) ( )tututu gl +=    (18)



The compensating control (16) can now be chosen as a
linear law:

( ) xKxtK gg −=,    (19)

The problem changes to choose the matrix gain gK  so
that ( )xBKG gKg −inf  is achieved. As

( ) xBKGxBKG gg .−≤−  holds for all x,

problem reduces to find ( )gBKG −min . The solution
to this latter problem is well known and GBK g

+= ,

where +B  is the Moore-Penrose generalized inverse of
B, and

( ) GBBBK TT
g

1−= (20)

Finally, it is important to note that by using the local
control (14), and the compensating control (19), the
closed-loop system can be obtained as:

( ) ( )[ ]{ }xGBBBBISBBRAx TTT
i

11
. −− −+−=   (21)

This system is connectively exponentially stable with a
prescribed degree π  (siljak and sundareshan, 1976). 

3.2 Control design with estimation of state and
interaction variables using genetic algorithm

In an interconnected power system, not all the state
variables are measurable, and the interaction variables
cannot be obtained from local measurements. In (Sperry
and Feliachi, 1988) the least square algorithm is used to
solve this problem.  Here, a new method is used to
overcome this limitation.

In Fig. 1 , subsystem 1 is connected to subsystem 2 to n.
They all have interaction on each other. Obviously, each
subsystem has states which are shown by nXX Λ1 . 1X
shows all the states of subsystem 1 , 

2X  shows the states
of subsystem 2 and so on. From the viewpoint of
subsystem 1, it can just measure the parameters of its
own and calculate its states ( 1X ) ignoring the interaction
effects. It has no idea of the states in subsystem 2 to n. In
the following, a method which can estimate the states of
all subsystems is proposed. Here, the notation

( )nixi Λ1=  is used for the main subsystem which can
measure its own parameter and ( )iexceptnjx j Λ1=

for the subsystems attached to it.

Fig. 1. Interconnection of subsystems and their states

For any of the n subsystems, assume that the local states
( ix ) in eq. (8) are known. So from (8):

∑
=

=−−
n

j
jijiiii

i xGuBxA
dt
dx

1
   (22)

Since, the left side of the above equation is known and
ijG for all i and j is known too, an estimation scheme can

be used to estimate jx . First, for any subsystem, assume
that :

MuBxA
dt
dx

iiii
i =−− (23)

Then by the usage of (22):

ninii xGxGxGM +++= Λ2211 (24)

So, use the genetic algorithm to search for the best
[ ]nii xxxxxx ΚΛ 1121 +−= in order that the

following optimization index is minimized:

∑
≠
=

−=
n

ij
j

jij xGMf
1

   (25)

Applying the search techniques of genetic algorithm, all
jx ’s for all subsystems can be estimated.

However, if ix  is unknown,a local Kalman filter can be
used in the following way, as given by the flowchart of
Fig. 2:
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Fig. 2. Flowchart of state and interaction estimation 
using genetic algorithm

In each iteration, both the Kalman filter and the
interaction estimator are used simultaneously. First, all
the states are assumed to be zero. Then, by eq. (26) the
local states of each subsystem are estimated. After that,
by the help of eq. (22) and genetic algorithm, the

{ 11 X

{ 22 X { nXn…{ 33 X

Assume 0=
∧∧

ji xandx

Estimate ix
∧

using 26

Start

Calculate  M using 23

And use ix
∧

 instead of ix

Use GA to find  jx in eq. 24 such that f

in eq. 25 is minimized

1+= ii

If ni ≤

Stop

Yes

No

1=i

iexceptnj Λ1=



interactions are estimated. Finally, go to the next
iteration. Note that in each iteration the states estimated
in the previous iteration are used as the initial seed for
the genetic algorithm. The structure of the proposed
controller is illustrated in Fig. 3:

Fig. 3. Decentralized Control Structure for the ith 
subsystem

iw : Plant noise               iv  : Measurement noise

iu  : Control input         iy  : Output

ix : local state                jx : interaction state

Decentralized stochastic control   Consider a large-scale
linear system described by

)(
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.
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n

i
ii ξ++= ∑

=
   (27)

( ) ( ) ( )ttxCty iii η+= (28)
Where each variable is defined as is common.
The problem is finding n decentralized controllers

( ) nitui Λ1, =  such that (27) to (28) are satisfied, while
the following cost functional is minimized:
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This stochastic linear regulator problem is interpreted by
the separation principle, which states that the optimal
control system consists of the optimal filter in cascade
with the deterministic optimal controller derived in the
previous section (Meditch, 1969; Brown, 1997). The
result is indicated in Fig. 4.

Fig. 4. Diagram illustrating separation principal

Due to (14), (16) and Fig. 4, the decentralized stochastic
control can be written as:

( ) ( ) ( ) ( ) igii
g
i

l
ii xKKtututu

∧

+−=+=  (30)

4. SIMULATION RESULTS

A three- machine power system model, which is shown
in Fig. 5, is chosen to demonstrate the efficiency of the

proposed controller. The system parameters are given in
Table 1.

Fig. 5. Three-machine example system (Zhu, et al.,1998)

Table 1 Parameters of system in Fig. 5

Parameters Generator  1 Generator 2,3

dx P.U 1.863 2.36
'
dx P.U .657 .719

Tx P.U .129 .127

D P.U 5.0 3.0
'

doT sec 6.9 7.96

H sec 4.0 5.1

adx P.U 1.712 1.712

ck P.U 1.0 1.0

0ω rad/s 314.159

12x P.U .7

13x P.U .93

23x P.U .9

This three-machine system has three subsystems, each
including one generator and the related transformers and
buses. Tielines can be considered as interactions. The
system is modeled according to the formulation given in
section 2. So, three subsystems each having three states,
are obtained.  For example, the numerical value of the
parameters in equation (8) for subsystem 1 is:
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Here, only the results for one of the subsystems are
shown. The same also applies to other subsystems.

4.1  Local controller design
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∧
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Each subsystem is simulated separately and a local
controller for every subsystem is designed. The
responses of corresponding simulation results for
subsystem 2 are shown in Fig. 6-8.
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Fig. 6. Unit step response of system states without 
controller
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Fig. 7. Unit step response of system states with local 
controller

0 5 10 15 20
-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

t(sec)

C
on

tro
lle

r o
ut

pu
t

Controller output 1
Controller output 2

Fig. 8. deterministic local optimal control

Note that the performance index for every subsystem is
given as the following:

( ) ( )( )dttututxtxJ i
T

ii
T

ii ∫
∞

+=
0

)()(  ni ...1=      (35)

4.2  Comparison of centralized and decentralized
controllers

In this part two cases are considered. First, a controller
of the form gl uuu +=  which was discussed in part 3,
is proposed (case 1). Second, a 9×9 optimal controller is
designed and the system is considered globally (case 2).
In both cases the behavior of system states is the same
and is shown in Fig. 9.  The curves of system states for
both cases are the same and this indicates that the
performance of decentralized system is almost the same
as its centralized counterpart. In Fig. 10 the global
control (Mechanical power) in eq. 18 is shown for

subsystem 3 and is compared by the control needed in
centralized case. Considering optimal controller output
(Fig. 10), it is clear that in decentralized case, the
amount of mechanical power is increased and it is
necessary to have a larger controller output to minimize
the interactions.
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Fig. 9. states of the system in both cases
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Fig. 10. Controller outputs of the system in both   cases

4.3  Performance due to addition of state estimator

After designing the deterministic optimal controller,
Kalman filter and genetic algorithm are used to estimate
the states of all subsystems. In Fig. 11-12, the results of
controlled system states for subsystem 3 are shown. The
curves indicate that after a while, the estimated states
converge to the actual ones and this proves the good
performance of both algorithms in estimating the system
states. This proves that the proposed decentralized
stochastic control has an acceptable performance,
compared to the centralized case.
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5. CONCLUSIONS

This paper proposes a decentralized stochastic controller
for multimachine power systems. A decentralized
feedback control scheme is proposed for optimization of
the system. Local controllers are used to optimize each
subsystem, ignoring the interactions. Then, a
compensating controller is applied to minimize the effect
of interconnections and improve the performance of the
overall system. At the cost of the suboptimal
performance, this optimization strategy ensures stability
of the system. To account for the modeling uncertainties,
a local Kalman filter and genetic algorithms are designed
to estimate all local states and interactions for each
subsystem. The controller uses these estimates,
optimizes a given performance index and then regulates
the system states. The performance of the proposed
controller is assessed through simulation of a sample
three-bus system. It is shown that the proposed
methodology gives good results.
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