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Abstract: In most application of the data classifications, the data sets contain both 
continuous and categorical variables. In other word, multivariate data sets containing 
mixtures of continuous and categorical variables arise frequently in practice. This paper 
presents a novel Probability Neural Network (PNN) which can classify the data for both 
continuous and categorical input data types. The case with either continuous or categorical 
input variables is a special case of the mixtures of continuous and categorical input 
variables. Therefore, the proposed PNN can be also applied to these two special cases. 
Expectation Maximisation (EM) algorithm is widely used for mixture models of 
continuous variables, but not applicable for categorical variables. A mixture model of 
continuous and categorical variables is used to construct a Probability Density Function 
(PDF) which is the key part for the PNN.  
 
The proposed PNN has two advantages comparing with the conventional algorithms such 
as the Multilayer Perceptron (MLP) Neural Network. One advantage is that the PNN can 
produce better results comparing with the MLP Neural Network, even using the 
normalized input variables for the MLP. Normally, the normalized input variables generate 
a better result than the non-normalized input variables for the MLP Neural Network. 
Another advantage is that the PNN does not need the cross validation data set and does not 
produce the over training like the MLP neural network does. These have been proven in 
our experimental study. The proposed PNN can also be used to perform the unsupervised 
cluster analysis. The superiority of PNN in comparing the MLP neural network is 
demonstrated by applying them to a real-life data set, the Trauma data set which includes 
both continuous and categorical variables.    Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Probability density functions (PDF) play an 
important role in pattern recognition. If we know 
PDF for each class, then the probability of the new 
pattern belonging to each class can be obtained by 
using the Bayes’ rule. Mixture models (Yuille 1994, 
Michalis 2001, Bishop 1995) are widely used to 
approximate a true density function for continuous 
variables. The Parzen window estimator (Parzen 
1962) is a fundamental technique for estimating 
PDF. The mixture model for the binary variables 
was studied by Yang (2001). However, it is quite 
often that the data set of a real application contains 

both continuous variables and categorical variables 
with values 0,1,2,…,m (m > 0). It is noted that the 
binary variables are the special case of categorical 
variables (m=1).  
 
This paper presents a new approach of finding PDF 
for a mixture of continuous and categorical input 
variables, which we call the probability neural 
network (PNN) for the mixtures of continuous and 
categorical input variables. Up to now, most of the 
works are dealing with either the binary variables 
(m=1) or continuous variables which are special 
cases of our approach. The number of components 
can be determined by using the algorithms proposed 



 

     

by Cang (2001), which has successively be applied 
for determining the number of components in PDF. 
 
This paper consists of five sections. In section 2, the 
widely used Expectation Maximisation (EM) 
algorithm is briefly described. Section 3 presents a 
new mixture model for the mixture of continuous and 
categorical variables. The probability neural network 
and the procedures of training probability neural 
network are presented in Section 4. An experimental 
result is presented in Section 5. The conclusions are 
presented in Section 6. 
 
 

2. GAUSSIAN MIXTURE MODELS FOR 
CONTINUOUS VARIABLES 

 
The EM algorithm is widely used to estimate 
parameters in mixture models for continuous 
variables. For M components, the mixture density for 
a d dimensional vector X can be written as a linear 
combination of component density functions p(X|j) 
in the form 
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where P(j) are the parameters in the mixture model 
and satisfy the following conditions  
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The component density functions p(X|j) in (2.1) 
satisfy  
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The most widely used distribution for each 
component density is the Gaussian distribution. The 
Gaussian mixture model is only applicable for 
continuous variables. The form of the Gaussian 
density function for each component is 
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where the parameters µj and ∑j are the means of a d-
dimensional vector and a d×d covariance matrix, 
respectively. Values for the parameters P(j), µj and 
∑j can be determined in each component using the 
EM algorithm (Bishop 1995) as follows.  
 
First, a K-means clustering method is used for a 
fixed number of components M in (2.1) to determine 
parameters P(j), µj and ∑j for each component p(X|j) 
in (2.4). Clearly the condition (2.3) is satisfied. Then, 
the parameters P(j), µj and ∑j are obtained for each 
component using the following recursive formulas.  

∑ =
=

N

n
n
jw

N
jP

1
,1)(  

∑
∑

=

== N

n
n
j

N

n
nn

j
j

w

Xw

1

1µ , 

∑
∑

=

=
µ−µ−

=Σ N

n
n
j

N

n j
n

j
nn

j
j

w

XXw

1

1
'))((
,            (2.5) 

 where N is the size of the data set and the weight is   
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p(Xn|j) is defined in (2.4). Iterate E-step, M-step, 
stable point for the parameters in the mixture model 
can be reached.  
 
The EM algorithm presented above requires that all 
the variables are continuous, and the EM can not be 
applied to the cases with a mixture of continuous and 
categorical variables. We propose a modified EM 
algorithm which can deal with the case for a mixture 
of continuous and categorical variables in next 
section. 

 
 

3. MIXTURE MODELS FOR CONTINUOUS AND 
CATEGORICAL VARIABLES 

 
 

3.1 Mixture Models 
 
In (2.1), we assume that X is a d-dimensional vector, 
which contains dc continuous variables, d1 binary 
variables, d2 variables with 3 categorical values, and 
in general, dm-1 variables with m categorical values, 

thus, ∑
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ic ddd . The EM algorithm described 

in section 2 can not be applied directly. We propose a 
new model to handle this issue. The X can be 
represented as  
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Assuming that the categorical variables are 
independent of each other, for a mixture of 
continuous and categorical variables in mixture 
model p(X) (2.1), we propose to represent component 
p(X|j) as the following form   
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where Xc are the continuous variables and fk

(m)(x) (k = 
0,1,2,…,m) is a function of variable x. We can show 
that the component density functions p(X|j) satisfy 
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are: 
• If the variables are all continuous variables, (3.1) 

reduces to p(X|j)=p(Xc|j) and p(Xc|j) satisfies 
Gaussian distribution (2.4).  

 



 

     

• If the variables are all binary variables, (3.1) 
reduces 

to )(
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Therefore, the proposed model (3.1) includes the 
continuous or binary models, which are widely 
applied as a special case. Next, we show that how to 
determine the parameters in (3.1) for a mixture of 
continuous and categorical variables (any number of 
categorical variables). The general form of the 
functions fk

(m)(x) is investigated in section 3.2. 
 
 

3.2 Determining fk
(m)(x) in Mixture Model (3.1) 

 
In this section, we will develop a general form for 
the functions fk

(m)(x) in (3.1).  

For m = 1, fk
(m)(x) is a binomial probability 

distribution, thus f0
(1)(x)=1-x, f1

(1)(x)=x. For m = 2, 
2
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In general, functions fk

(m)(x) (k = 0,1, 2,…,m) can be 
represented as an m order polynomial 
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We can rewrite the function fk

(m)(x) (k = 0,1, 2,…,m) 
as follows:  
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If variable x takes the categorical value i, 
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and xi (i = 0,1,2,…,m) are the elements of matrix 
X~ and are discrete values, such as xi=i.  

 
For example, if m=1, x0=0 and x1=1 then 
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If m = 2, x0=0, x1=1 and x2=2, then 
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The coefficients of vector A~  can be obtained using 
equation (3.4) 
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(3.5). It is noted that equation (3.5) is easy to apply. 
We can show that the inverse of X~  exists and the 



 

     

computation is not an issue since it will be computed 
off-line.  

 
 

3.3 Maximum Likelihood and EM Algorithm for 
Mixture Model 

 
In this section, we determine the parameters in the jth 
(j=1,2,…,M) component defined in (3.1). Gaussian 
components are used for the continuous variables. 
Then the mixture model (3.1) contains the following 
adjustable parameters: P(j), µj and ∑j from Gaussian 
components, 01jip  (i1=1,2,…,d1) from binary 

components, 02jip  and 12jip  (i2=1,2,…,d2) from 
ternary values components, and so on. The negative 
log-likelihood (Bishop, 1995) for the set of N 
patterns {Xn, n=1,2,…,N} is 
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From (3.6), it is easy to see that maximizing the 
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Setting the derivatives with respect to each parameter 
in (3.6) to zero, we obtain                                                                     
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 where N is the size of the data set and the weight is   
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where p(Xn|j) is defined in  (3.1) as p(X|j). 
 
It is noted that equations (3.7) and (3.8) are the same 
as equations (2.5) and (2.6), but the calculation of 
weights wj

n defined in (3.8) need Xn which is a 
mixture of continuous and categorical variable in 
(3.7) and (3.8). 
 
For a general categorical value which has m 
parameters 110 ,, , −mjijiji mmm

ppp L (im=1,2,…,dm, k 
= 0,1…,m and j = 1,2,…,M) in (3.1), setting the 
derivatives with respect to each of the parameters 
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where im=1,2,…,dm, k = 0,1…,m and j = 1,2,…,M.
  
 

Notice that 1
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binomial probability distribution, we have  
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In the modified EM algorithm for the maximum 
likelihood (3.6), we can use (3.7), (3.8) and (3.10) to 
update the parameters. The mixture model for 
continuous and categorical Variables is determined. 
 
 

4. PROBABILITY NEURAL NETWORK 
 

The architecture of probability neural network is 
described in Figure 1. Typically, this probability 
neural network has d inputs and k outputs (one for 
each class). The main different with a classical neural 
network lies on the specific functional form of the 
base functions which are considered to be density 
functions for each class as well as on some 
constraints involving from the hidden to the output 
layer. 
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Figure 1: Probability Neural Network 
 
Following the discussion in section 3 and Figure 1, 
we summarise the computing algorithm for (3.1) as 
below. 
 



 

     

Modified EM Algorithm: 
 

(1). For the supervised learning, divide the data 
set into two parts, the training and test data 
sets. The size of the training data set is N. 

 
(2). Partition the training data set for each class. 

Thus we obtain a number of sub-training 
data sets. Each sub-training data set belongs 
to one class. The size of the sub-training 
data set is 

kCN for class Ck ( ],,2,1[ Kk L∈ ) 
and K is a total number of classes.  

 
(3). For each sub-training data set which 

belongs to one class, determining the 
number of components using the algorithms 
proposed by Cang (2001) and then compute 
the parameters for each components in (3.1) 
using (3.7), (3.8) and (3.10). Then obtain 
the mixture models )/( kCXp  defined in 
(2.1) for each class, where Ck indicates class 
k.  

 
(4).  Compute the prior probability for each 

class )( kCP , where 
N

N
CP kC

k =)( . 

 
(5).  For each new pattern X, (pattern in test data 

set), compute the values )()/( kk CPCXp  
( ],,2,1[ Kk L∈ ) and determine kCX ∈ by 
taking ))()/(max( kk CPCXp . 

 
 

5. EXPERIMENT STUDY 
 
In this section, we apply the new PNN to a realistic 
data set (Trauma data set) and we also compare PNN 
with the standard MLP neural network. The cross 
validation method is used for these problems. The 
data is partitioned into a fixed number (N) of 
partitions or folds, each fold is hold out as test data in 
turn, while the other N-1 folds are measured and then 
the N estimates are averaged to give a final accuracy. 
 
In the following analyses, the definitions for the 
confusion matrix, sensitivity, specificity, true 
positive rate (TPR) and false positive rate (FPR) for 
two classes are given as follows. 
 
Table 1: The confusion matrix for two classes:  

 True Class Label 
 Class 

1  
Class 
2 

Class 
1 

A11 A12 

 
Prediction Class 
Label 

Class 
2 

A21 A22 

 
where Sensitivity = Number of true positive 
decisions/Number of actually positive cases = 
A22/(A12+A22). 
 
Specificity = Number of true negative/Number of 
actually negative cases = A11/(A11+A21). 

 
True positive rate (TPR) = Sensitivity. 
 
False positive rate (FPR) = 1 – Specificity.  
 
The Helicopter Emergency Medical Service (HEMS) 
attached to the Royal London Hospital has gathered 
data from pre-hospital trauma patients over a ten-
year period. The size of the trauma data is 1044 
excluding 321 patterns that contain missing data 
somewhere. The outcome is a lived/died prediction 
on individual patients. The trauma data is an 
unbalanced data with only 158 died cases among 
1044 patterns. There are 16 features including 5 
continuous features in this data set. The features are 
described as in Table 2, where ‘Con’ indicates a 
Continuous feature and ‘Cat’ Indicates a categorical 
feature.  
 
Table 2: Features in the trauma data set 

Name Type Values Description 
Age Con.  Age from 0 to 100 
Gender Cat. 0 1 Male=1,Female=0 
Injury Type Cat. 0 1 Blunt=1,Penetrating=0 
Head Cat. 0 1 2 3 4 5 

6 
Head injury 

Facial Cat. 0 1 2 3 4 Facial injury 
Chest Cat. 0 1 2 3 4 5 

6 
Chest injury 

Abdominal Cat. 0 1 2 3 4 5 Abdominal or pelvic 
contents injury 

Limbs Cat. 0 1 2 3 4 5 Limbs or bony pelvis 
injury 

External Cat. 0 1 2 3 External injury 
Respiration 
Rate 

Con.  Respiration rate 

Systolic 
Blood 

Con.  Systolic blood pressure 

GCS Eye Cat. 0 1 2 3 4 Glasgow coma score 
(GCS) eye response 

GCS Motor Cat. 0 1 2 3 4 5 
6 

GCS motor response 

GCS 
Verbal 

Cat. 0 1 2 3 4 5 GCS verbal response 

Oximetry Con.  Oximetry (% red blood 
cell O2 saturation) 

Heart Rate Con.  Heart rate 
Class Cat. 0, 1 Classification , 1 is 

died and 0 is lived.  
 
In order to test every single pattern and make 
comparisons for these methods, we divided the 
trauma data into five almost equally size fold without 
overlapping each other. The sizes of each fold are 
208, 208, 208, 210 and 210, respectively. We used 
one fold as the test data set and the rest of four fold 
as the training data set in turn. This has guaranteed 
that every pattern in the trauma data would test once. 
This random partitioning was done 10 times. For 
each partition data, the means of the sensitivity, 
specificity and classification rates for all 5 folds of 
the test data are calculated by using two methods. 
One is the new PNN. The other method is the 
standard MLP neural network with one hidden layer. 
The results of the sensitivity, specificity and 
classification rate set are shown in Table 3 for the 
test data.  
 



 

     

Table 3: The training and test performance results on 
each data partition (there are 10 random partitions) 
(SE=sensitivity, SP=specification, CL=classification) 

Training Data 
Probability neural network 
(PNN) 

Multilayer Perceptron neural 
network (MLP) 

SE SP CL SE SP CL 
0.7489 
0.7639 
0.7641 
0.7561 
0.7790 
0.7806 
0.7758 
0.7705 
0.7876 
0.7701 

0.9410 
0.9467 
0.9427 
0.9458 
0.9422 
0.9444 
0.9402 
0.9441 
0.9438 
0.9407 

0.9119 
0.9191 
0.9157 
0.9172 
0.9174 
0.9195 
0.9152 
0.9179 
0.9200 
0.9150 

0.8157 
0.8129 
0.8321 
0.8309 
0.8522 
0.8037 
0.8243 
0.8496 
0.8355 
0.7731 

0.9786 
0.9771 
0.9796 
0.9814 
0.9842 
0.9774 
0.9813 
0.9817 
0.9785 
0.9766 

0.9538 
0.9523 
0.9571 
0.9586 
0.9643 
0.9512 
0.9576 
0.9617 
0.9569 
0.9459 

Mean 
0.7697    0.9432    0.9169 0.8230    0.9796    0.9559 
Standard Division 
0.0118    0.0022    0.0025 0.0233    0.0024     0.0053 
Test Data 
Probability neural network 
(PNN) 

Multilayer Perceptron neural 
network (MLP) 

SE SP CL SE SP CL 
0.6178 
0.6187 
0.5991 
0.6269 
0.6313 
0.6128 
0.6135 
0.6139 
0.5776 
0.5878 

0.9241 
0.9336 
0.9277 
0.9256 
0.9268 
0.9223 
0.9454 
0.9313 
0.9293 
0.9211 

0.8773 
0.8869 
0.8792 
0.8813 
0.8822 
0.8745 
0.8946 
0.8831 
0.8736 
0.8718 

0.7386 
0.6956 
0.7239 
0.7097 
0.6706 
0.6803 
0.7095 
0.6991 
0.6635 
0.6907 

0.8808 
0.8876 
0.8841 
0.8847 
0.8927 
0.8888 
0.8985 
0.8903 
0.8869 
0.8844 

0.8573 
0.8572 
0.8562 
0.8592 
0.8611 
0.8554 
0.8697 
0.8564 
0.8554 
0.8536 

Mean 
0.6099    0.9287    0.8804 0.6981    0.8879     0.8581 
Standard Division 
0.0169    0.0070    0.0068 0.0233    0.0051     0.0046 

 
From Table 3, we can see that our new approach, 
PNN  with 88.04% classification rate in overall 
mean, give a better result for the test data set than the 
MLP neural network with 85.81%, even use the 
nomalized input variables for MLP neural network. 
For the training data, we can see that there is a over 
training for MLP neural network, while there is no 
problems on this matter for the PNN. 
 
 

6 CONCLUSIONS 
 
This paper has proposed a new probability neural 
network (PNN) for a mixture of continuous and 
categorical variables inputs. We have used a realistic 
data set (Trauma data set) to demonstrate that the 
proposed method is more reliable, and more accurate 
than the standard MLP neural network. It can be 
applied in many problems. The main problem for the 
MLP neural network is the over training, while the 
PNN can overcomes this problem, and the PNN does 
not need to use the cross validation data set.  
 
The PNN can be applied to multi-class and high 
dimensional data set. In order to reduce computation 
time for a high dimensional data set, we can reduce 
dimension by using wider range of feature selection 
algorithms or principal components analysis (PCA) 
first, then apply PNN to this reducing dimensional 
data set as input. 
 

The PNN can be used as unsupervised learning as 
well. We can obtain the clusters without considering 
the class label and measure the similarity and 
different among the clusters. The number of the 
clusters can be determined by the algorithms 
proposed by Cang (2001). We found that for 
unsupervised learning using the PNN is more 
accurate and more robust than the principle 
component analysis (PCA) for the most complicate 
data sets.  
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