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Abstract: A stochastic algorithm for solving the sensor selection problem is
presented. The problem arises when many sensors are jointly trying to estimate
a process but only a subset of them can take measurements at any time step.
The proposed stochastic sensor selection strategy is easy to implement and is
computationally tractable. The algorithm is illustrated through simple examples
of sensor scheduling and dynamic sensor coverage. Copyright c©2005 IFAC
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1. INTRODUCTION AND MOTIVATION

Recently there has been a lot of interest in
networks of sensing agents which act coopera-
tively to obtain the best estimate possible, e.g.,
see (Roumeliotis and Bekey 2002, Hall and Llinas
1997, Viswanathan and Varshney 1997) and the
references therein. While such a scheme admit-
tedly has higher complexity than the strategy of
treating each sensor independently, the increased
accuracy often makes it worthwhile. If all the sen-
sors exchange their measurements, the resulting
estimate can be even better than the sensor with
the least measurement noise (were no information
exchange happening). Some of the basic problems
in sensor networks from an estimation perspec-
tive are fusion of data from multiple nodes, data
association, sensor scheduling in case all sensors
cannot measure or transmit simultaneously, opti-
mal positioning of sensors etc. All these problems
become more complicated when multiple targets
are present. As the number of nodes in the net-
work grows, it also becomes desirable for purposes
of robustness and communication complexity that
the solutions to these problems should not involve
a central computation node. In this paper, an al-

gorithm to solve the problem of sensor scheduling
is presented. The algorithm can also be extended
for use in the problem of optimal positioning and
trajectory generation of sensors.

The problem of sensor scheduling arises when one
(or multiple) sensors have to be selected out of
N given sensors at every time step for taking
measurements. This might be the case if, e.g.,
there are echo-based sensors like sonars which
can interfere with each other. Another situation
where sensor scheduling is useful is in tracking
and discrimination problems, where a radar can
make different types of measurements by trans-
mitting a suitable waveform each of which has
a different power requirement. There might be
shared communication resources (e.g., broadcast
channels or a shared communication bus) that
constrain the usage of many sensors at the same
time. Such a situation arises, e.g., in telemetry-
data aerospace systems. Because of its impor-
tance, this problem has received considerable at-
tention in literature. The seminal work in (III
et al. 1967) proved a separation property be-
tween the optimal plant control policy and the
measurement control policy for LQ control. The



measurement control problem, which is the sen-
sor scheduling problem, was cast as a non-linear
deterministic control problem and shown to be
solvable by a tree-search in general. Forward dy-
namic programming and a gradient method were
proposed for the purpose. To deal with the com-
plexity of a tree-search, greedy algorithms have
been proposed many times, some examples be-
ing (Oshman 1994, Kagami and Ishikawa 2004,
Gupta et al. 2004). Allied contributions have
dealt with robust sensor scheduling (A. Savkin
and R. Evans and E. Skafidas 2000), a greedy
algorithm with an information based cost mea-
sure (Zhao et al. 2002) and the works of (Miller
and Runggaldier 1997, Krishnamurthy 2002, Rago
et al. 1996) etc. A different numerical approach to
solve the problem was provided in (Athans 1972)
who cast the problem as a two-point boundary
value problem. This approach was further con-
sidered in (Kerr and Oshman 1995, Herring and
Melsa 1974). Our algorithm differs from these
approaches in that it is based on the idea of letting
the sensors switch randomly according to some
optimal probability distribution to obtain the best
expected steady-state performance. Besides being
computationally more tractable than the other so-
lutions proposed in the literature, it does not rely
on the sensors having considerable computational
power or knowledge about other sensors. There
are numerous other advantages as will be pointed
out later in the paper.

The paper is organized as follows. The next sec-
tion deals with the problem formulation. Then the
random sensor selection algorithm is presented.
The algorithm is analyzed by using some of the
tools developed in the pioneering work (Sinopoli
et al. 2004) and extended in (Liu and Goldsmith
n.d.). A few simple numerical examples are used
to illustrate the algorithm and some of its ad-
vantages. Finally, the conclusions and avenues for
future research are presented.

2. MODELING AND PROBLEM
FORMULATION

Consider a system evolving as

x[k + 1] = Ax[k] + Bw[k]. (1)

x[k] ∈ Rn is the process state at time step k
and w[k] is the process noise. The process noise
is assumed white, Gaussian and zero mean with
covariance matrix Rw. The process state is being
observed by N sensors S1, S2, · · · , SN with the
measurement equation for the i-th sensor being

yi[k] = Cix[k] + vi[k], (2)

where yi[k] ∈ Rs is the measurement. The mea-
surement noises vi[k]’s for the sensors are assumed
independent of each other and of the process

noise. Further the noise vi[k] is assumed to be
white, Gaussian and zero mean with covariance
matrix Ri. At every time step, one sensor is chosen
to take the measurement and the measurement
is communicated to all the sensors in an error-
free manner. 1 Since all measurements are being
shared, all the sensors have the same estimate of
the process state x[k], denoted by x̂[k], that is
given by a Kalman filter assuming a time-varying
sensor. Assuming that the i-th sensor takes the
measurement at time step k, the estimate error
covariance evolves according to the equation

P [k + 1] = AP [k]AT + BQBT

− AP [k]CT
i

(
CiP [k]CT

i + Ri

)−1
CiP [k]AT . (3)

If the initial state x[0] has covariance Π0, the
initial condition is given by P [0] = Π0.

It is obvious from (3) that error covariance is a
function of the sensor schedule. The goal is to
find the sensor schedule that minimizes the steady
state error covariance. Obviously all the possible
sensor schedule choices can be represented by a
tree structure. The depth of any node in the
tree represents time instants with the root rep-
resenting time zero. The branches correspond to
choosing a particular sensor to be active at that
time instant. Each node is associated with the
cost function evaluated using the sensor schedule
corresponding to the path from the root to that
node. Obviously, finding the optimal sequence re-
quires traversing all the paths from the root to
the leaves in the tree. If the leaves are at a depth
d, a total of 2d schedules need to be compared.
This procedure might place too high a demand
on the computational and memory resources of
the system. In the next section, an alternative
algorithm that does not involve traversing the tree
is presented.

The problem of optimal sensor trajectory gener-
ation can also be cast in the above framework.
For simplicity, assume that only one sensor is
present. The area to be covered is discretized into
a grid and it is assumed that the discretization
is fine enough so that only the evolution of the
process at these points needs to be observed. The
limited sensing range is modeled by assuming (for
example) that if the sensor is at a particular point,
it generates measurements corresponding to that
point only. As a simple example consider that the
area to be monitored has been discretized into N
points, denoted by l1, l2, · · · , ln. At location li,
the process evolves according to the equation

xi[k + 1] = Aixi[k] +
∑

j 6=i

Aijxj [k] + Biwi[k],

1 Note that the assumption of one sensor being allowed

per time step is without loss of generality.



where the process state at location li is assumed
to be also affected by the process states at other
locations. Thus by stacking the process states at
all these locations into a single vector x[k], it can
be seen that for the entire process, the evolution
is of the form given in (1). Similarly assume that
if the sensor is at location li, its measurement is
described by the equation

yi[k] = Hixi[k] + vi[k].

By defining Ci to be a matrix of the form
[
0 · · · 0 Hi 0 · · · 0

]
, this can easily be recast in

the form of (2). Clearly there are N such virtual
sensors. Thus the sensor trajectory problem is
equivalent to the sensor scheduling problem de-
scribed earlier where N sensors are present but
only one can be selected to take the measure-
ment. Physical constraints on the sensor motion
can be modeled, e.g., by assuming that the sen-
sor can move from its current location only to
its immediate neighbors. This constraint can be
easily modeled by assuming that the sensors are
selected with transition probabilities described by
a Markov chain. The states of the Markov chain
represent the current location. Thus the probabil-
ity of moving from one location to a location far
away in a single time step is zero. For the special
case of Aij = 0 and movement according to i.i.d.
random variable, slightly stronger results can be
derived, as in (Tiwari et al. 2005).

3. DESCRIPTION OF THE ALGORITHM

Our algorithm consists of choosing sensors ran-
domly according to some probability distribution.
The probability distribution is chosen to minimize
the expected steady-state error covariance. We
will present the results for the case of probabilities
being given by a Markov chain and then specialize
for the case of sensors being chosen in an i.i.d.
manner. Denote

fC(P ) = APAT + BQBT

−APCT
(
CPCT + R

)−1
CPAT ,

fk
C(P ) = fC (fC (· · · (fC(P ))))

︸ ︷︷ ︸

fC applied k times

.

Thus the evolution of the estimate error covari-
ance of system (1) when a sensor of the form

y[k] = Cx[k] + v[k]

is chosen at time k is given by P [k+1] = fC (P [k]).

Suppose that at time k, the sensor Si is chosen
from the set S1, S2, · · · , SN according to a Markov
chain with probability transition matrix Q = [qij ],
where qij is the probability of choosing sensor j at
time step k + 1 given that sensor i was chosen at

time step k. Then the expected error covariance
evolves as

E [P [k + 1]] = E [fCi
(P [k])] . (4)

Explicit evaluation of the right hand side appears
to be intractable. Instead bounds are presented
and then the steady-state upper bound is sought
to be minimized. Detailed proofs for the following
results are given in (Gupta and Chung 2004).

Theorem 1. Denote qi = maxj qji. Then an upper
bound for E [Pk] is Xk where

Xk+1 =







∑

i

qifi (Xk) k ≥ 1

∑

i

π0fi (P0) k = 0,

where π0 is the initial probability of being in state
i. Note that this condition holds for time-varying
probabilities as well. However in the case when the
probabilities are time-invariant, a sufficient condi-
tion for covergence of the error covariance is that
Xk converges as k progresses. The convergence of
this recursion for all initial conditions X[0] ≥ 0
is equivalent to the existence of a positive definite
matrix P and matrices K1, K2, · · · , KN such that

P >

N∑

i=1

qi(BRwBT + KiRiK
T
i )+

(A + KiCi)X (A + KiCi)
T

.

Further the limit X̄ is the unique positive semi-
definite solution of the equation

X =

N∑

i=1

qifCi
(X) . (5)

Note that if the sensors are chosen independently
from one time step to next with sensor i chosen
with probability πi[k] at time step k, then qi =
πi[k]. Thus this case is a special application of the
theorem given above.

Theorem 2. Denote the probability of being in
Markov state j at time step k by πj

k. Then a lower
bound for E [Pk] is Yk where

Yk = qk−1
jj πj

0f
k
0 (P0)

+

k∑

i=1

qi−1
jj

(

πj
k+1−i − qjjπ

j
k−i

)

f i
j

(
BRwBT

)
.

Note that one such lower bound exists for each j.
Thus a necessary condition for divergence of the
error covariance is that

qjj |λmax

(
Āj

)
|2 > 1,

where λmax

(
Āj

)
is the maximum magnitude

among the unobservable eigenvalues of A when
(
A,Cj

)
is put in observer cannonical form.



Again note that the theorem can be easily spe-
cialized to the iid case where πj

k = πj [k] defined
above.

The algorithm thus consists of choosing the prob-
abilities πi’s (in the case of i.i.d. choice of sensors)
or the transition probability matrix (in the case of
choice being done according to a Markov chain) to
optimize the steady state upper bound as a means
of optimizing the expected steady state value of
Pk itself. The problem can be solved by a gradient
search algorithm or even by brute force search
for a reasonable value of N . The lower bound
is chiefly used to determine sufficient conditions
for the expected error covariance to diverge. After
determining the probability values, the sensors are
turned on and off with their corresponding prob-
abilities. Note that the implementation assumes
some shared randomness among the sensors so
that two sensors are not turned on at the same
time. This can readily be achieved, e.g., through
a common seed for a pseudo-random number
generator available to all the sensors. Alterna-
tively a token-passing mechanism to implement
the scheme can readily be implemented. Some
mechanism for sensor synchronization is also as-
sumed.

4. APPLICATION EXAMPLES AND
SIMULATION RESULTS

In this section, the algorithm is applied to a
few sample problems and it is shown that the
algorithm offers a new, interesting and powerful
tool in several problems. Assume a vehicle moving
in 2-D space. Denoting the position of the vehicle
in the two dimensions by px and py, and the
velocities by vx and vy, the state of the system can

be modeled by the vector X =
[
px py vx vy

]T
.

With a discretization step size of h = 0.2, the
dynamics of the vehicle are assumed to be

X[k + 1] = AX[k] + Bw[k], (6)

where

A =







1 0 h 0
0 1 0 h
0 0 1 0
0 0 0 1







B =







h2/2 0
0 h2/2
h 0
0 h







.

The term w[k] is the perturbation term in ac-
celeration and is modeled as a zero mean white
Gaussian noise with covariance matrix Q given
by

Rw =

[
1 0.25
0.25 1

]

.

Consider two sensors, each with a sonar-like
model (Ramachandra 2000). Measurements taken
by the two sensors, y1 and y2 can be described by

yi[k] =

[
1 0 0 0
0 1 0 0

]

X[k] + vi[k]. (7)

The terms vi[k] model the measurement noise,
again assumed white, zero mean and Gaussian and
also independent from each other and from w[k].
The sensor noise covariances are

R1 =

[
2.4 0
0 0.4

]

R2 =

[
0.7 0
0 1.4

]

. (8)

On optimizing the upper bound in (5) over π1

and π2, the optimal probability for sensor 1 turns
out to be π1 = 0.395. Indeed, if the optimal
sequence is found by a complete tree search, it
turns out that in the steady state, the percentage
of sensor 1 in the sequence is about 37%. For this
probability distribution, the steady state value of
the upper bound of the sum of the traces of the
expected error covariance matrices for the two
sensors turns out to be 2.3884, which compares
well with the value of about 2.3 obtained by the
optimal strategy obtained by the complete tree
search. Note that our algorithm results in orders
of magnitude less calculation than tree search
algorithms and finds a near-optimal schedule in
the steady state.

In addition, there are several unique advantages
that our algorithm offers over the conventional
algorithms. A very important one is the issue of
sensor costs. Frequently, there are other consid-
erations beyond estimation accuracy in using one
sensor over another. As an example, it might be
more costly to use a very accurate sensor at every
time step. Similarly, there might be some sort
of fairness requirement such that one sensor is
not used all the time and drains all its power.
Usually, it is not clear how to appropriately weigh
the sensor costs with estimation costs. Thus it
is not clear how to even generate a tree for the
sensor schedule choices and thus the conventional
algorithms do not offer an easy way to take such
issues into consideration. However it is easy to
take sensor costs into account with our algorithm.
As an example, consider three sensors of the form
of (7) being present with the measurement noise
covariances being given by

R1 =

[
3.24 0
0 1.04

]

R2 =

[
0.25 0
0 1.36

]

R3 =

[
0.56 0
0 0.56

]

.

For the optimal probability distribution, the sen-
sor 2 should be chosen with a probability of
0.2 and the sensor 3 with a probability of 0.8.
However, such a strategy would lead to sensor
3 draining away all its power and thus an addi-
tional constraint might be imposed such that on
an average, no sensor is used more than twice as
much as any other sensor. The search is restricted
to the relevant π1 − π2 space and the optimal
probabilities satisfying the additional constraint
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Fig. 1. Optimal probability of use of sensor 1
varies if the channel is dropping packets.

are obtained as the sensor 1 being used with a
probability of 0.2 and the sensors 2 and 3 being
used each with a probability of 0.4.

Another situation in which our algorithm is much
more easily used is when there is some randomness
imposed on the system. As an example, consider
the case of two sensors with measurement noise
covariances given by the values in (8). Suppose
that the sensors are communicating over a com-
munication channel that randomly drops packets
with probability λ with a base station that fuses
the measurements. Compared to the conventional
methods, it is easy to take the channel into ac-
count while using our algorithm. (5) is set up
assuming there are three sensors present. The first
two sensors have covariance matrices given above
and they are chosen with probabilities π1(1 − λ)
and π2(1−λ). The third sensor corresponds to the
packet being dropped (and hence no measurement
being taken) and it is chosen with a probability of
(π1 + π2) λ. Then the upper bound is optimized
over the parameters π1 and π2. Figure 1 shows
the change in the optimal probability of choosing
sensor 1 as the packet drop probability λ is varied.
The plot shows that the packet drop probability
indeed plays a role in determining the optimal
sensor schedule.

The lower bound derived in Theorem 2 is useful
for obtaining the region in the sensor usage prob-
ability space when the expected error covariance
in (4) diverges. Consider the same example with
the second sensor now of the form

y[k] =

[
0 0 1 0
0 0 0 1

]

X[k] + v[k],

with the sensor noise covariances given by (8).
Clearly the plant is unobservable while using the
second sensor alone and hence as the probability
of using the second sensor increases, the error
covariance would diverge. It can be shown that
although there is a huge gap between the lower

and upper bounds, both the bounds diverge at
π1 = 0.56 which is thus the critical probabil-
ity for error divergence. This value also matches
the value given in Theorem 2 since the largest
eigenvalue of the unobservable part of A is 1.5.
It may be noted that in general, the probabilities
when the bounds diverge will not match and they
serve as lower and upper bounds on the critical
probability.

To consider a representative example for sensor
coverage, consider an area gridded into N = 2
points being surveyed by one sensor. Denoting the
process at the i-th point by xi and the state of

the entire system by X =
[
x1 x2

]T
, consider the

system evolving as

X[k + 1] =

[
α 0
0.2 1.5

]

X[k] + w[k],

where w[k] is white noise with mean zero and
covariance equal to the identity matrix. When the
sensor is at point i, it can measure the value of xi

corrupted by a Gaussian zero mean noise. Thus,
as explained earlier, there are 2 virtual sensors
taking measurements according to

yi[k] = xi[k] + vi[k],

where vi[k] are all independent of each other and
their variances are given by R1 = 1 and R2 = 10.
The sensors are modeled as switching according
to the transition probability matrix

[
p 1 − p
1 − q q

]

.

Immediately we obtain the conditions that for
stability of the observation error covariances, a
necessary condition is that p < 0.44, q < 1

α2 .
When the upper bound given in (1) is optimized
as a function of α, the optimal values of the
parameters are given in figure 2. It can be seen
that when the process at the first point is stable,
the sensor tends to stay a long time at the second
point. As α increases, however, the probability
of going to the first point increases. Because of
the high measurement noise at the second point,
the sensor tends to remain at the second point
however.

5. CONCLUSIONS AND FUTURE WORK

An algorithm for stochastically selecting sensors
to minimize the expected error covariance was
presented. Upper and lower bounds on the error
covariance were obtained and their convergence
was studied. This algorithm offers many advan-
tages over conventional algorithms for sensor se-
lection. The algorithm was applied to the prob-
lems of sensor scheduling and sensor coverage.

The work can potentially be extended in many
ways. Finding out how tight the bounds are and
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coming up with tighter bounds is one avenue.
Understanding of the spread of the actual value
of covariance would also be interesting.
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