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Abstract: In this paper we propose a novel adaptive control algorithm which allows
to handle the issues of detectability, robustness and transient performance of adap-
tive systems. The controller structurally is similar to that of Panteley et al (2002). It
is designed, however, on the grounds of rather different philosophy – estimation of
the derivatives of plant state. In addition to systems which can be rendered to be as-
ymptotically stable by means of the state feedback, plants satisfying assumption of
partial asymptotic stability are considered. Copyright © 2005 IFAC
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1. INTRODUCTION

The solution of adaptive control problem of nonlin-
ear dynamical systems with linear parameterization
has a rather long history (Fomin, et al., 1981; Frad-
kov, et al., 1999; Ioannou and Sun, 1996; Krstić, et
al., 1995; Marino and Tomei, 1995). Direct adaptive
control school is a direction in this field, where ad-
justment of regulator parameters is applied without
previous identification of unknown coefficients of
plant model. The main obstacle, which is met a de-
signer of adaptation algorithms in such way, is robust
properties of synthesized system. Using classical
methods to solve mentioned problem (Fomin, et al.,
1981; Ioannou and Sun, 1996; Krstić, et al., 1995) it
is possible to ensure desired stability properties of
the system for the case of external disturbance ab-
sence. But if some additional uncertainty is appeared,
which can be modeled as external unmeasured dis-
turbances, then in general adaptive system loses its
overall stability property. To compensate distur-
bances influence and to save stability property for
perturbed system many approaches were used. Some
of them (Fomin, et al., 1981; Krstić, et al., 1995)
results to steady-state error rise for vanishing distur-
bances, others disturbances model are required
(Fradkov, et al., 1999). Hybrid adaptive systems like
(Hespanha, et al., 2002; Morse, 1995; Efimov, 2003)
provide the most convenient solution of this task, but

it is a hard to check transient behavior quality in such
systems. In fact, quality of transient processes is an-
other one basic obstacle for wide practical applica-
tion of adaptation algorithms. For implementation in
real world applications identification ability of ad-
aptation algorithm and desired upper bound on all
variables are needed. The last obstacle, that should
be pointed out here, is requirement for design pur-
poses information about plant Lyapunov function for
case without uncertainties. Such Lyapunov function
should possesses negative definite time derivative,
but in common case it is a hard task to find such
function candidate for the system. In many applica-
tions information available for so-called storage
functions, which have negative semidefinite time
derivative. Construction of adaptation algorithms
based on storage functions is important task for me-
chanical systems, where a total energy function can
be viewed as a storage function.

Derivative estimation of components of plant state
space vector is a variant of posed problem solution.
In papers (Bartolini, et al., 1999; Levant, 1998; Pan-
teley, et al., 2002; Tyukin, 2003; Tyukin, et al.,
2003) were shown that information about time de-
rivative of state vector or specially chosen output
function can help us to increase quality of transient
behavior of adaptive system. From another side, in-
formation about time derivative of state space vector



is equivalent to direct measurements of right hand
side of system equations. The last ability can be
viewed as parametric or signal uncertainty estima-
tion, that can help us to provide desired robust prop-
erties of adaptive system. In this paper a solution
overlapping all three mentioned above obstacles is
presented, which is based on time derivative estima-
tion of auxiliary output function. It is shown that
proposed adaptation algorithm ensures robust stabil-
ity property for overall system for any bounded ex-
ternal disturbances, additionally, zero steady-state
error is guarantied for vanishing disturbances. An
improved with respect to (Fomin, et al., 1981) upper
estimates for system solutions are presented. State-
ments and definitions included in Section 2. In Sec-
tion 3 properties of proposed solution are substanti-
ated. Auxiliary results are placed in Appendix.

2. STATEMENT of the PROBLEM

Let us consider model of uncertain system:
( ) dxBuθxxGxfx )(),()()( ++ω+= t& , (1)

where nR∈x  is state space vector; mR∈u  is con-
trol input; pR∈d  is external disturbance, it is sup-
posed, that pRR →≥0:d  is Lebesgue measurable
and essentially bounded

( ){ } ∞+<≥= 0,supess ttdd
function of time, the class of such function we will
denote as pM ; qR∈θ  is constant vector of un-
known parameters. Function f  and columns of G
and B  are locally Lipschitz continuous, 0)0( =f ;
ω  is also locally Lipschitz continuous function and
uniformly bounded with respect to 0≥t  for any

fixed values of nR∈x . System has for any nR∈0x

and mM∈u , pM∈d  well defined at the least
locally solution ),,,( 0 tduxx , [ )max,0 Tt ∈ , if

∞+=maxT , then system is called forward complete.

A s s u m p t i o n  1 a . There exists continuously dif-
ferentiable function 0: ≥→ RRV n , such, that

( ) ( )xxx 21 )( α≤≤α V , ( )xxf α−≤)(VL

for some functions ∞∈αα K21,   for all nR∈x . □

Sign ⋅  denotes Euclidean norm of the vector. Ex-
pression )( xfVL  denotes scalar Lie derivative of
function V  with respect to vector field f , i.e.

)()()( xfx
xxf ∂

∂= VVL , term )( xGVL  further

will be stated for covector

)()()( xGx
xxG ∂

∂= VVL .

It is said, that function 00: ≥≥ →ρ RR  belongs to
class K , if it is strictly increasing and ( ) 00 =ρ ;

∞∈ρ K  if K∈ρ  and ( ) ∞→ρ s  for ∞→s .

A s s u m p t i o n  1 b . There exist continuously dif-

ferentiable function 0: ≥→ RRV n  and continuous

function ln RR →:ψ , such, that for all nR∈x

( ) ( )xxx 21 )( α≤≤α V , ( ))()( xψxf ϕ−≤VL

for some functions ∞∈αα K21, , K∈ϕ . □

Both introduced assumptions fix stability properties
of system (1) for vanishing disturbance d  and con-
trol u  under condition 0=θ , i.e. then control ex-
actly compensates influence of parametric and signal
uncertainties. In Assumption 1a the case of global
asymptotic stability of system )( xfx =&  is consid-
ered, in Assumption 1b the case of a kind "total en-
ergy" function is discussed with negative semidefi-
nite time derivative V& . To prove asymptotic conver-
gence of vector x  to zero a detectability notion
should be introduced. System (1) is detectable with
respect to continuous output function ln RR →:ψ ,
if condition 0)( ≡tψ  for all 0≥t  implies, that

0)(lim =
∞+→

t
t

x . Thus, if system (1) is detectable with

respect to output ψ , then Assumption 1b is equiva-
lent to Assumption 1a, both establish global asymp-
totic stability property for autonomous system

)( xfx =& . Let us introduce auxiliary output function
)( xhy =  with continuously differentiable

qn RR →:h , which importance will be explained
later. The next assumption introduces technical
growth condition for function α .

A s s u m p t i o n  2 . There exist functions
∞∈λ K , K∈σ  and  constant 0≥γX  such, that

( )
( ) ( )dx

xdxhdx ΒB

σ+λ−≤

≤α−+ 22)()( LVL , γ≥ Xx ,

where )()()( xBx
xhxhB ∂

∂=L . □

This assumption will be used only to base robust
properties of overall adaptive system. And that is
more, Assumption 2 always can be satisfied by ap-
propriate choice of intermediate control law.

Before we proceed, persistent excitation (PE) and
positive in average (PA) properties should be men-
tioned. Definitions of these properties are placed in
Appendix (Definitions A1 and A2). In fact, PE con-
dition is widely used in theory of adaptive control
(Fomin, et al., 1981; Loria, et al., 2002) to base
identification ability property of adaptation algo-
rithm. Positive in average property was introduced in
(Efimov and Fradkov, 2003) and in Lemma A2
equivalence conditions between PE and PA proper-
ties are established. But according to Definitions A1
and A2, PA property can be more simpler verified. In
our work PA property also will be used to prove ro-
bust stability of proposed adaptive system taking in
account results of Lemma A1.

Control goals, which should be reached by appropri-
ate design of control )( xu  (it is supposed, that vec-



tor x  is available for measurements) and adaptation
algorithm, that helps to handle parametric uncertainty
problem, can be formulated as follows:
1. Global Lyapunov stability of the system solution
and asymptotic convergence of )( tx  to zero for
vanishing disturbance 0)( ≡td , 0≥t ;

2. Global boundedness of solutions for any pM∈d .

3. ROBUST ADAPTIVE CONTROL

During this work we will use the following conven-
tional "certainty equivalence" control law

θxu
)

),( tω−= , (2)

where qR∈θ
)

 is an estimate of unknown parameters
vector θ . When matching condition )( tθθ

)
= , 0≥t

is satisfied, system (1), (2) with Assumptions 1 and 2
becomes robustly stable and all control goals are
reached. Thus, further we should design an algorithm
for θ

)
 adjusting, which help us to ensure this match-

ing condition satisfying.

Here Speed Gradient (SG) approach (Fomin, et al.,
1981; Fradkov, et al., 1999) will be utilized to syn-
thesize adaptation algorithm for (2). In SG approach
adaptation algorithm has the following general form:

( )tQ ,,θxθ θ
)

&&) )∇γ−= ,
where 0>γ  is a design parameter;

0: ≥→× RRRQ n  is continuously differentiable
auxiliary goal functional, which time derivative with
respect to system (1), (2) explicitly depends on vec-
tor θ

)
. In our work we will use goal functional

( )∫ ττ−τ+=
t

dLVtQ
0

2)()(5.0)(),( xhyxx f& .

It is casual due to time derivative is included under
sign of integral. Its time derivative is as follows:

( ) 2)()(5.0)()( tLttVtQ xhy f−+= &&& .
Therefore, adaptation algorithm takes form:

( )( ) ,)()(),(

)(),(~

xhyxhx

xxθ

fG

G

LtLt

VLt
TT

TT

−ωγ−

−ωγ−=

&

&

(3)

where θθθ
)

−=
~  is parameter estimation error. Algo-

rithm (3) explicitly depends on time derivative of
function y , which is not measured due to statement
of the task. So an estimator of y&  should be devel-
oped, this problem will be considered later in the
section. Here let us suppose, that an estimation signal

)( tw  of )( ty&  is available with some error )( te :

)()()( ttt eyw += & , 0≥t .
In this case algorithm (3) should be rewritten in re-
alizable form:

( )( ) .)()(),(

)(),(~

xhwxhx

xxθ

fG

G

LtLt

VLt
TT

TT

−ωγ−

−ωγ−=&
(4)

To emphasize main advance of algorithm (4) let us
incorporate into consideration the following equality

dxhθxxhxhy BGf )(
~

),()()( LtLL +ω=−& ,
substituting it in (4) we receive:

( )
.~),()()(),(

)()()(

)(
),(~

θxxhxhx

edxhxh

x
xθ

GG

BG

G

tLLt

tLL

VL
t

TT

T

T
T

ωωγ−

−












++

+
ωγ−=&

(5)

Thus, according to (5) algorithm (4) has a negative
parametric feedback with matrix functional gain

)()( tt T ΩΩγ , where ),()()( tLt xxhG ω=Ω . If

the smallest eigenvalue of  ΩΩT  possesses PA
property (for example, this is the case if system has
well defined relative degree { }1,...,1  from input θ~  to
output y ), then as it follows from Lemma A1, pa-

rameter error θ~  stays bounded for any essentially
bounded variables x , d  and e  (differential equation
(5) repeats form of equation (A1)). Therefore, the
first obstacle mentioned in introduction is handled.
Further, this negative feedback with gain Ω  allows
to increase identification ability of adaptation algo-
rithm (4), that help us to handle the second obstacle
mentioned in introduction and improve the quality of
transient processes in the system.

From other point of view, if we would compare algo-
rithm (5) for 1=q  and )()( xx Vy =  with classical
one (Fomin, et al., 1981; Fradkov, et al., 1999) ob-
tained with SG approach for auxiliary goal functional

)(),( xx VtQ =
(

, that is

TT VLt )(),(~ xxθ Gωγ−=
(& , 0>γ( , (6)

then it is possible to conclude, that algorithm (5)
without negative parametric feedback coincides with
(6) under substitution

( )( )dxBVLte ++γ=γ )(1( .
The advances of algorithm (5) were mentioned be-
fore, but here we recover that, comparing with clas-
sical algorithm (6), proposed solution has sign vary-
ing design parameter γ( .

Before we proceed let us introduce the main ideas of
signal w  construction. As it possible to conclude
that presence of time derivative in adaptation algo-
rithm equations allows to introduce additional (with
respect to classical solution) negative parametric
feedback. The feedback gain Ω  improves quality of
transient processes and adds robust stability proper-
ties. Exact form and kind of dependence on system
state vector of function Ω  is not important, this
function Ω  should only satisfy PA property. There-
fore it is possible to generalize equation of adaptation
algorithm (4) or (5) as follows:

 ( ),)(~)()()(),(~ tttVLt TTT eθxxθ G −ΩΩγ−ωγ−=& (7)

where qqRR ×
≥ →Ω 0:  is some regressor continuous

matrix function and qRR →≥0:e  is a “derivative”
estimation error function. To apply results of Lemma
A1 to system (7) this error should satisfy the follow-
ing series of properties

0)( ≡td , 0≥t  ⇒ ∞+<ττ∫
∞+

t
d2)(e , 0≥t ;(8)

pM∈d  ⇒ qM∈e . (9)
Therefore, the last properties define requirements



which should be possessed by derivative estimator:
( ) θxxhxhzxhz Gf

)
& ),()()()( tLLr ω+−+−= ;(10)

),()( tLr xxhG ω−Ω−=Ω& ; (11)

zxhθe ++Ω= )(T , (12)

where 1>r  is a constant, qR∈z  is an auxiliary
variable. The closely connected regulator was pro-
posed in (Panteley, et al., 2002) for case xxh =)( .
Let us calculate dynamics of error e  basing on over-
all system equations (1), (2), (7) , (10) – (12):

dxhezyθe B )(Lr +−=++Ω= &&&& . (13)
Therefore, property (8) is satisfied for such estimator,
property (9) also can be deduced if boundedness of
state space vector can be substantiated for pM∈d .
Denote { }max1 ),(),...,(min)( λλλ= ttta q

t
, where

)( tiλ , qi ,1=  are eigenvalues of matrix

)()( tt T ΩΩ , { } 0)0(),...,0(max 1max >λλ≥λ q , it
is clear that in this case signal )(ta  is always
bounded and admits inequality:

q
T tatt I)()()( ≥ΩΩ ,

where qI  is identity matrix of dimension )( qq × .
And now let us consider separately cases of distur-
bance d  absence and presence.

T h e o r e m  1 . Let 0)( ≡td , 0≥t  and Assump-
tions 1a hold. Then system (1), (2), (7), (10) – (12) is
globally stable with respect to ( )ezθxX ,,,, Ω=

)
,

0)(lim =
∞+→

t
t

x  and the following estimate holds:

( ) ( )
( ) ,)()(~)(5.0)(

)0(~),0()(~),(

0

22
∫ τ



 τ−ττ+τα−

−≤
t

da

RttR

eθx

θxθx
(14)

where 215.0)(),( baba −γ+=VR . If also signal
)( ta  is ),( ∆µ -PA for some 0>µ , 0>∆ , then

θθ =
∞+→

)(lim t
t

)
.

P r o o f . Let us analyze Lyapunov-like function:

∫
∞+

ττ+=
t

dRtU 2)(5.0)~,(),,( eθxθx
)

. (15)

According to differential equation (13) integral of e
is bounded in this case and it can be used as a part of
Lyapunov-like function. Additionally, the presence
of this integral component is the reason why function
U  is called Lyapunov type. Time derivative of U
with respect to system equations admits inequality:

( ) 2~)(5.0 θx taU −α−≤& .

From condition 0≤U&  stability property for ),( θx
)

follows. Further ),( Ωz  are bounded due to they are
solutions of asymptotically stable linear systems with
bounded inputs. Integrating of above inequality on
time interval [ )t,0  yields

( )

( )

( ) .)(~)(5.0)(

)(5.0)0(~5.0)0(

)(5.0)(~5.0)(

0

2

0

221

221

∫

∫

∫

τ



 ττ+τα−≤

≤ττ−γ−−

−ττ+γ+

∞+
−

∞+
−

t

t

da

dV

dttV

θx

eθx

eθx

From which inequality (14) can be obtained. From
LaSalle invariance principle also follows, that )( tx
asymptotically converges to zero. If )( ta  is ),( ∆µ -
PA, then applying result of Lemma A1 to system (7)
it is possible to prove desired property θθ →)(t

)
. ■

R e m a r k  1 . According to inequality (14) system
has stability property not uniformly with respect to
initial conditions )0(X . Indeed, presence in right
hand side of (14) or (15) a time-variant term

∞+<ττ= ∫
t

dtE
0

2)()( e

introduces additional dependence of trajectories up-
per bound on properties of derivative estimation error
e . Form another side, comparing this inequality with
the same derived for conventional algorithm (6)
(Fomin, et al., 1981; Fradkov, et al., 1999):

( ) ( ) ( )∫ ττα−≤
t

dRttR
0

)()0(~),0()(~),( xθxθx ,

it is possible to conclude, that upper estimate (14)
has additional negative term

∫ τττ−
t

da
0

2
)(~)(5.0 θ ,

which seriously improves quality of transient proc-
esses in the system, especially for small amplitudes
of signal )( tE  (Tyukin, 2003). □

T h e o r e m  2 . Let 0)( ≡td , 0≥t  and Assump-
tions 1b hold. Then system (1), (2), (7), (10) – (12) is
globally stable with respect to X  and globally as-
ymptotically stable with respect to output ψ :
1. If signal )( ta  is ),( ∆µ -PA for some 0>µ ,

0>∆  and system (1) is detectable with respect to
output ψ , then 0)(lim =

∞+→
t

t
x  and θθ =

∞+→
)(lim t

t

)
;

2. If 1=q , )()( xx Vy =  and signal )( ta  is not
),( ∆µ -PA for any 0>µ , 0>∆  and system (1) is

detectable with respect to output
( ) ( )),,( tVL xxψ G ω , then 0)(lim =

∞+→
t

t
x .

Also the following estimate holds:

 
( ) ( )

( )∫ τ



 τ−ττ+τϕ−

−≤
t

da

RttR

0

22
)()(~)(5.0)(

)0(~),0()(~),(

eθψ

θxθx
.(16)

P r o o f . Let us consider time derivative of function
(15) in this case:

( ) 2~)(5.0)( θxψ taU −ϕ−≤& .

As before 0≤U&  and system is stable (not uniformly
with respect to initial conditions). Integrating of the



inequality again yields estimate (16). Due to system
solution X  is bounded, then it has nonempty com-
pact invariant set of ω -limit points, which according
to LaSalle invariance principle is contained in

{ }0~)(0)(: =∩== θxψX taQ , 0≥t .

Thus, system is globally asymptotically stable with
respect to output ψ  (Rumyantsev and Oziraner,
1987). Let us consider the first part of conditions
imposed in the Theorem. From detectability property
of system (1) with respect to output ψ  it is possible
to conclude, that on trajectories in set Q  property

0)(lim =
∞+→

t
t

x  holds. If )( ta  is ),( ∆µ -PA, then

applying result of Lemma A1 to system (7) it is pos-
sible to prove desired convergence property

θθ =
∞+→

)(lim t
t

)
. According to second part of condi-

tions of the Theorem, for any 0>µ  and 0>∆  there
exists a 0>T  such, that inequality

∆µ≤ττ∫
∆+T

T
da )(

holds, in other words it means, that there exists a
0>T , such, that average value of function )( ta  is

less than any 0>µ . So, taking in mind, that function
)( ta  takes only nonnegative values and bounded,

there exists a 0>T , such, that µ≤)( ta  for all Tt ≥
and any 0>µ . Therefore function )( ta  vanishes
into set of ω -limit points, but for 1=q  function

2)()( tta Ω=  and convergence to zero of signal
)(ta  is equivalent to asymptotic convergence to zero

of vector Ω . Taking in mind (11) it is possible to
conclude, that input ),()( tL xxhG ω  of this subsys-
tem also converges to zero in set of ω -limit points of
the system. But for )()( xx Vy =  it ensures, that set
of ω -limit points is located into set

( ) ( ){ }0,0)(:, =ω∩== tVL xxxψθx G
)(

Q ,
where system is detectable and relation

0)(lim =
∞+→

t
t

x  holds. ■

R e m a r k  2 . As it was mentioned, PA property is
satisfied for )( ta  if system has well defined relative

degree { }1,...,1  from output y  to input θ~ . And that
is more, this property holds if smallest eigenvalue of
matrix )()( tt T ΩΩ  is bigger than zero in average. It
is worth to indicate, that the case of PA property of
signal )( ta  is not interesting from the practical point
of view, due to in general it is too hard to establish
conditions of PA property realization in a system
with vanishing state x  and disturbances d . More
suitable for practical implementation is the second
part of conditions proposed in Theorem 2. In this
case detectability assumption should be satisfied for
extended output ( ) ( )),,( tVL xxψ G ω , that simpli-
fies stability investigation. □

But requirement of PA property for signal )(ta  be-
comes rather mild if we assume presence of non

vanishing disturbance d  (in this case state x  also
loses its convergence to zero property generally).
Before we proceed let us introduce several auxiliary
functions from class K :

)(max)( xB
x

VLs
s≤

=δ , 2)(max)( xhB
x

Ls
s≤

=ν ,

{ })(),(min)(~ sss αλ=λ ,

{ }2)()(),(max)(~ sXsXss γγ ν+δσ=σ .
Such functions δ  and ν  exist due to continuity
property of functions to be majorized.

T h e o r e m  3 . Let pM∈d ; ( ) )(~ xx Vχ≥λ

0>χ ; signal )( ta  is ),( ∆µ -PA for some 0>µ ,
0>∆  and Assumptions 1a and 2 hold. Then solution

of system (1), (2), (7), (10) – (12) is globally
bounded.
P r o o f . Let us analyze Lyapunov function:

eeθxθx TRtU 5.0)~,(),,( +=
)

.
Time derivative of U  with respect to system equa-
tions (1), (2), (7), (10) – (13) takes form:

( )
( ) ( ) .

)1(~)(5.0

22

22

dxhdx

eθx

BB LVL

rtaU

++

+−−−α−≤&

Taking in mind Assumption 2, let us consider sepa-
rately two cases γ≥ Xx  and γ< Xx :

γ≥ Xx  ⇒ 
( )

( ) ;)1(

~)(5.0

2

2

de

θx

σ+−−

−−λ−≤

r

taU&

γ< Xx  ⇒ 
( )

.)()()1(

~)(5.0

22

2

dde

θx

γγ ν+δ+−−

−−α−≤

XXr

taU&

Thus, the following inequality holds independently
on vector x  amplitude:

 
( ) ( )

( ) .~)1(~)(5.0)(

~)1(~)(5.0~

22

22

deθx

deθx

σ+−−−χ−≤

≤σ+−−−λ−≤

rtaV

rtaU&
(17)

Due to signal )(ta  is bounded it is possible to apply
Lemma A3 to inequality (17) and obtain estimate:

( )dσ+−≤ ~)( UtkU& ,

where { } )()22,(min,1min)( 11 taartk γγ−χ= −− .
From which basing on result of Lemma A1 bound-
edness of variables x , θ~  and e  follows. From (11)
variable Ω  is also bounded, variable z  is an addi-
tive item of  e  and all other items are bounded. ■

4. CONCLUSION

In this paper an extension of proposed in (Panteley,
et al., 2002) adaptive controller is presented. The
robust properties are substantiated and estimates on
transient processes quality are given. The dimension
of proposed adaptive controller is qq 22 + , that is
smaller than qnqn ++  in (Panteley, et al., 2002).
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APPENDIX

D e f i n i t i o n  A 1  (Fomin, et al., 1981). It is said,
that essentially bounded matrix function ( )tR , 0≥t
with dimension 21 ll ×  admits ( )ϑ,L –persistent ex-
citation (PE) condition, if there exist strictly positive
constants L  and ϑ  such, that for any 0≥t

( ) ( )
1l

Lt

t

T dsss IRR ϑ≥∫
+

,

where 
1lI  is identity matrix of dimension 11 ll × . □

The following property was proposed in (Efimov and
Fradkov, 2003).

D e f i n i t i o n  A 2 . Function RRa →≥0:  is
called ( )∆µ, –positive in average (PA), if for any

0≥t  and any ∆≥δ , 0>µ ,

( ) δµ≥ττ∫
δ+t

t
da . □

Importance of PA property is explained in the fol-
lowing lemma. Proofs are omitted due to space limi-
tation.

L e m m a  A 1 . Let us consider time-varying linear
dynamical system

)()( tbptap +−=& , 00 ≥t , (A1)
where Rp∈   and functions RRa →+: ,

RRb →+:  are Lebesgue measurable, b  is essen-
tially bounded, function a  is ),( ∆µ –PA for some

0>µ , 0>∆  and essentially bounded from below,
i.e. there exists +∈RA , such, that:

{ } Atttaess −≥≥ 0),(inf .
Then solution of system (A1) is defined for all 0tt ≥
and it admits estimate
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L e m m a  A 2 . Suppose, that function )( ta , 0≥t

admits ),( ϑL –PE condition, then function )(2 ta  is

),5.0( LLϑ – PA. Conversely, if function )(2 ta ,
0≥t  is ),( Lϑ –PA, then function )( ta  also pos-

sesses ),( ϑLL –PE condition too. ■

L e m m a  A 3 . Let 001 : ≥≥ → RRV ,

002 : ≥≥ → RRV  and 001 : ≥≥ → RRk  be Lebesgue
measurable and essentially bounded functions,

02 ≥∈Rk ; 1k  is ),( ∆µ -PA. Then inequality
( ))()()()()()( 2132211 tVtVtktVktVtk +≥+ , 0≥t

holds for )*,( ∆µµ -PA function

)(*)( 13 tktk µ= , { }1
12,1min* −=µ kk . ■


