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Abstract: The simulated moving bed process is a continuous chromatographic separation
process, which is important in various fields, from sugar to enantiomer separation. In this
paper, a systematic approach to parameter identification of a kinetic SMB model is
presented. In contrast to previous studies, identifiability and the influence of local minima
are investigated from fictitious data obtained by simulation of different SMB processes at
various operating conditions. Copyright © 2005 IFAC
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1. INTRODUCTION

The simulated moving bed (SMB) process is a
continuous chromatographic separation process in
which a counter-current movement of the liquid and
solid phase is allowed by periodically switching the
inlet and outlet ports. This technology is important in
various fields, from sugar to enantiomer separation.
However, the transfer of the SMB technology, used
industrially for hydrocarbon and sugar separation, to
the separation of fine chemicals is not immediate.
Indeed, the conditions and requirements (product
quantities and purities, characteristics of the phases,
interactions, ...) are very different. The main issues
are the selection of optimal operating conditions and
process control, which require the development of a
process model and the estimation of its parameters.

A first-principles SMB model usually includes the
isotherm parameters, the column porosity, the
diffusion and/or the mass transfer coefficients.
Typically, all these parameters are determined from
batch experiments, performed on analytical columns
or on the SMB columns. Most of the methods

described in the literature suffer from a number of
drawbacks. Indeed, many are based on assumptions
that are usually not verified (e.g. ideal conditions)
(Dose et al., 1991; Guiochon et al., 1994; Felinger et
al., 2003; Altenhoner et al, 1997). Some methods
require a large amount of products, like the frontal
analysis. None of them gives an estimation of the
error on the identified parameters. To the authors’
knowledge, no systematic identifiability study has
been performed.

On the other hand, only a few studies report work on
model identification from SMB experiments
(Zimmer et al., 1999), (Toumi and Engell, 2004). In
both papers, certain parameters are not identified, e.g.
the diffusion coefficient in (Zimmer et al., 1999) or
the particle diffusion and particle porosity in (Toumi
and Engell, 2004) and no confidence intervals on the
estimated parameters are given.

The aim of this work is to develop an identification
method to determine with good accuracy the
isotherm parameters as well as the mass transfer
coefficients in a SMB model from SMB experiments.



The differences with respect to previous studies are
the following:

- A realistic chromatographic model, which
incorporates a limited number of parameters, and
competitive Langmuir isotherms (an obvious first
choice) 1is considered.

- Identifiability and the influence of local minima
are studied by performing parameter estimation from
fictitious measurements obtained by simulation of a
model with known parameters.

- The errors on the estimated parameters are
calculated.

The text is organised as follows. The SMB process is
described in section 2. In section 3, the problem
statement and the identification approach are
presented. Section 4 is devoted to an identifiability
study and section 5 to an analysis of the basin of
attraction and the existence of local minima. In
section 6, the covariance matrix of the estimated
parameters is calculated.

2. PROCESS DESCRIPTION

Figure 1 shows the equivalent counter-current
representation of a SMB process. The system is
subdivided into 4 different sections delimited by
several material flow outlets and inlets. The two
inlets are the input of the mixture to be separated and
the input of a desorbing solvent. The system also has
two withdrawal ports, one for the raffinate which
mostly consists of the less adsorbable component
(component 1) and another for the extract which
mostly consists of the more retained component
(component 2).
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Fig. 1. Equivalent counter-current representation of a
SMB process for the separation of a mixture with
two species 1 and 2
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The movement of the liquid and solid phases, as well
as the adsorption-desorption phenomena taking place
in each section are depicted in Fig.l. In our

simulation studies, the start-up of the plant coincides
with the beginning of the injection of a continuous
feed flow in the process filled with solvent.

The SMB plants considered in this study are made of
6 or 8 columns (in both cases, two columns are
placed in section 2 and 3) and are used to separate
two cycloketones (cyclopentanone and cyclohexa-
none or cyclopentanone and cycloheptanone). They
are equipped with four UV detectors. Two of them
measure the extract and raffinate outlet adsorbance.
The two others are placed in the circulating liquid
stream and give a direct measurement of the
complete UV-profile after 6 or 8 switches. The
sampling period of the UV detectors is less than 1%
of the switching time. At steady-state, the internal
concentration profiles shown in Fig. 2 are obtained at
50% of the switching period. The vertical lines
indicate the 8 positions that a UV detector in the
circulating stream occupies during a cycle (e.g. 8
switches) in a SMB plant with 8 columns.

3. PROBLEM STATEMENT AND
IDENTIFICATION APPROACH

3.1. SMB Model

Several mathematical models describe the mass
balances in chromatographic columns (Guiochon et
al., 1994). As a large number of simulation runs have
to be performed in the course of the numerical
optimization process needed for parameter estima-
tion, the computational load for integration of the
model equations must be as small as possible.
Moreover, the number of unknown parameters must
be limited to ensure identifiability. It turns out that
the kinetic model offers these significant advantages
(Grosfils and Levrie, 2004). In this model, a kinetic
equation takes the band broadening into account. The
model equations for column j of the SMB process are
written as follows for the liquid phase:
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with c¢;j, the fluid concentration, q;j, the solid
concentration, vj, the fluid velocity, €, the porosity. t
denotes the time and z, the axial coordinate. i =1, 2
refers to the species in the mixture to separate.

For the solid phase, the mass balance is given by:

aqi,j _ e
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with k;; the mass transfer coefficient, and q;;*, the
adsorbed equilibrium concentration. k;; is a function
of the velocity in column j, which is assumed linear.
Hence, a relative mass transfer coefficient, equal in
all the columns of the SMB plant for each

component, is defined by ki = ki;/v;.

The adsorbed equilibrium concentration is related to
the liquid-phase concentration by an adsorption
equilibrium relation. Many multicomponent non-
linear isotherm equations have been described. The



obvious first choice is the competitive Langmuir
isotherm with the following equation:

eq qSibiCi,j
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di,; 3)
where qg and b; are respectively the saturation
capacity and the equilibrium constant of component i
(1= 1, 2). In this study, two cases are considered. The
first one assumes that the saturation capacities of the
two components are identical, which is often
assumed for enantiomer separation. The second case
takes two different saturation capacities into account.
Note that, at infinite dilution, the Langmuir isotherm
reduces to a linear relation with slope H; =q b;.

Valve switching is taken into account by considering
that the concentration profiles in column j at the
beginning of a switching interval are equal to the
profiles obtained in the column j + 1 at the end of the
previous period:

Cij(ty =0,25) = ¢4y (ty =ALZ) 4)
where the index p denotes the current switching
period and At is the switching period.

In equations (1) to (4), the parameters are the
porosity, the fluid velocity in each column, the
relative mass transfer coefficients of the two
components and the isotherm parameters. In the next
two paragraphs, a discussion on how to exploit prior
knowledge on these parameters and how to deduce
the set of parameters to be identified by an
optimization approach is presented.

The porosity can be estimated from simple batch
experiments (Altenhoner et al, 1997). The fluid
velocity depends on the porosity, the cross-section
area of the column and the flow rate in the
considered column. The first is determined as
indicated above, the second is a known process
characteristic and the last one is fixed by the pumps
of the experimental plant. If an erroneous porosity or
flow rate are used in the determination of the
isotherm parameters from batch experiments, these
parameters will not be correctly estimated but they
will nevertheless be able to describe quite accurately
the propagation of the elution fronts (Seidel-
Morgenstern, 2004). In the following, it will be
considered that the porosity and the flow rates are
known with enough accuracy and that their influence
on parameter estimation is the same as in batch.

In theory, the mass transfer coefficients have to be
determined at low concentration in order to be related
to the column efficiency and to avoid including the
non-linearity due to the isotherm at high
concentration (Guiochon et al., 1994). In this study,
at first, they are considered as known in order to
examine whether it is possible to work with the
values obtained from batch experiments at low
concentration and, in a second step, they are
identified together with the isotherm parameters.

In conclusion, the unknowns are, for Langmuir
isotherms with identical saturation capacities, qs, by,
by, k™, kzrel, and for Langmuir isotherms with
difﬁerent saturation capacities, H;, H,, by, by, k'™,
ky™

3.2. Principle of Identification

Let 8 be the n-dimensional vector of unknown
parameters. The estimates of the parameters are
calculated by minimizing a cost function, which
measures the difference between experimental
profile(s) and the corresponding profile(s) simulated
with Eq. (1) to (4). The cost function is defined as:
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with y,,, a measured UV signal to be specified below,
y, the corresponding simulated UV signal and N, the
number of measurements.

3.3. Optimization method and parameter constraints

The optimization method used is an algorithm for
unconstrained optimization by quadratic
approximation developed by Powell and called
UOBYQA (Powell, 2000).

For each unknown parameter, the prior knowledge
allows one to specify an interval within which the
estimated value must lie: 8()inr < 6(G) < 8()sy- To
enforce these constraints, the following non-linear
transformation is performed on each parameter:

8(7) = 0.5(8()sup *8()int * (B()sup = 8()ine ) tanh(8() "))
with 6(j), the j" parameter to identify, and 8 (j) O

[, the parameter which is actually determined by
numerical optimization.

3.4. Initial Estimates

Let ©.

wmie denote the initial estimates of 6. This initial
estimate is calculated from classical methods based
on batch experiments. The RTM method gives the
isotherm parameters (Guiochon et al.,1994, pp. 297 -
298) and the mass transfer coefficients are
determined from basic expressions of the height
equivalent to a theoretical plate (Guiochon et
al.,1994, pp. 39 and 44). Both methods show a good
compromise between accuracy and easiness (Grosfils
and Levrie, 2004).

An upper bound of the error on 6 AB

needed in the study of the basin of attraction
presented in section 5. As a large part of the error on
the initial estimate is due to the assumptions of the
classical methods (e.g. no diffusion and no mass
transfer resistance), the following procedure has been
used to determine such a bound. The above-
mentioned methods have been applied to fictitious
data generated with Egs. (1-3) for 8 realistic sets of

init » init > 18



parameter vectors 6™, i = 1, .., 8 (Grosfils and
Levrie, 2004). Denoting the parameter estimate

obtained for 6 by éim»t,iex, a bound on the
estimation error for each component of O can be

computed as ABjj, (j) = max|Bi5 ; (7) =~ 6™ ()] -
i=1,.,8 "

4. IDENTIFIABILITY
The main questions are:

e Which measurements (i.e. detectors and
experiment duration) are the most appropriate?

* Are the isotherm parameters identifiable from
SMB experiments with fixed mass transfer
coefficients?

* Are the mass transfer coefficients identifiable
together with the isotherm parameters from SMB
experiments?

To answer these questions, two approaches are
considered: sensitivity analysis and identification
from fictitious measurements generated from a model
with known parameters.

Note that the parameter vectors as well as the
operating conditions used in the following are
described in details in (Grosfils, 2004).

4.1. Sensitivity analysis
(Point et al., 1996; Vande Wouwer et al., 2000)

The sensitivity of measurement y with respect to
parameter 8(j) is defined as: ygq; =0y(t)/06(). If

the sensitivity is high, the measurement varies
significantly when changes in 0(j) are effected. To
determine if the parameters 6(j), with j = 1,...,n, are
identifiable simultaneously from measurement y, the
following matrix is built:

r r
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where [0, '] is the time span of interest.
It can be proven that if the determinant of this matrix,
the Gram determinant, does not vanish or if its
condition number is small, the sensitivities are
independent (Luenberger, 1969, p. 56) and the
parameters are identifiable simultaneously from
measurement y.

The detector that will be selected to record data for
identification will be the one that gives the largest
Gram determinant or the smallest condition number.
Hence, as the detectors in the circulating loop occupy
successively 6 or 8 positions in the SMB process
during a cycle, the sensitivities are calculated at these

positions for several realistic values of 8 and for
various operating conditions. The results indicate that
the sensitivities are larger at the positions where a
front can be observed (cf. Fig.2: positions 2, 3, 4, 5
and 6). Moreover, the sensitivities to the mass
transfer coefficients are smaller than the sensitivities
to the isotherm parameters.

Table 1 illustrates typical results obtained for one
value of © and specific operating conditions (similar
results have been obtained for other sets of
parameters and isotherms with the same saturation
capacity or with different saturation capacities). This
table gives the Gram determinant, D, and the
condition number, ¢, respectively for the
identification of the isotherm parameters and for the
simultaneous  identification of the isotherm
parameters and mass transfer coefficients. In the
latter case, the Gram determinant is smaller and the
condition number is larger than for the identification
of gqs and b; only. This is due to the presence of
smaller elements in the matrix, corresponding to the
sensitivities to the mass transfer coefficients.
Besides, the Gram determinant is larger or the
condition number is smaller near the fronts (see Fig.
2 for the front positions). However the condition
number and the Gram determinant are not always
optimal at the same position. Moreover, the position
of the maximum of D and of the minimum of ¢
changes from one set of parameters and operating
condition to another. Therefore, it is not possible to
determine a unique optimal detector position. Hence,
in the following, measurements from a detector in the
circulating liquid stream will be used as it takes all
the positions successively.

A study of the length of the data set to be considered
for identification is also performed by computing D
and c for different values of the time span I', again
for a set of realistic values of 8 and various operating
conditions. No general conclusion can be drawn for
the best choice of I', yet using the data from the start-
up to steady-state offers a reasonable compromise.
This approach is used in the sequel.

4.2. Identifiability study from fictitious measurements

The first step is the generation of fictitious
measurements by simulation of model (1) with Eqgs.
(2-4), with a known parameter vector ;. The second
step consists in estimating 8 from these fictitious

measurements with 0y as initial estimate. If 6= 0;,

the parameters are said structurally locally
identifiable (Walter and Pronzato, 1997, p. 31). It
means that, for almost any 8  in the admitted
parameter space, there exists a neighbourhood V(8"
such that,

& O V() and y(t,0)=y(t,0") = 6=0".

This method is applied for several realistic values of
O; and for various operating conditions. In every case,



Table 1: Results of the sensitivity analysis for the identification of the isotherm parameters;
With qs = 13.6, b; = 0.3, b, = 0.695; C,**! = C,*¢ = 1.456 vol%, At =150 s, L =0.1191 m, S = 3.53e-4 m?, Q, =
15.6 ml/min, Q4 = 17.9 mI/min, Qg = 32.6 ml/min, Qpeq = 10.6 ml/min, € = 0.83, k;=2.77 s™, k, = 1.58 s™ at 40
ml/min, 8 columns where L is the column length, S, the cross-section area, Qy, the fluid flow rate in zone k, Qs, the
solvent flow rate, Qg.q, the feed flow rate.

Identified  Time position  position position position position position position position
span (s) 1 2 3 4 5 6 7 8
s, b; 0-5000 D 1°21 1.26°-9  4.7°-10 52°10 6.3°-8 5.6°-8 0 0
c 2.35% 1.27°2 1.8%2 1.5°3 8.26% 8354  inf Inf
ki, qs, b; 0-5000 D 2°-39 8.3°-20  1.5°-20 4.4°20 2.5%18 6.7°-19 0 0
c 59% 7.26°3 2.4°3 4.77°3 6.2°6 8.81°7  -8.24°16 -8°15

ézef is obtained. Hence, in all these cases, the

isotherm parameters alone as well as the isotherm
parameters together with the mass transfer
coefficients are structurally identifiable.

5. BASIN OF ATTRACTION

The basin of attraction of a minimizer is the set of all
values of the initial estimates from which the
optimization algorithm converges to this minimizer.
As the cost function may have several minimizers, it
is useful to verify if all the possible initial estimates
are included into the same basin of attraction.
Verification for all initial estimates cannot be
achieved in practice. Yet the following procedure
gives useful information from a practical point of
view. The parameter identification is performed from
fictitious measurements generated with Egs. (1-4)
and a known parameter vector O The initial
estimates, 0,, are chosen at the vertices of a

The

edge length is chosen equal to at least 2A8;,; (cf.
section 3.4.). Three situations are successively
considered below: identification of the isotherm
parameters assuming exact knowledge of the mass
transfer coefficients, identification of the same
parameters with incorrect mass transfer coefficients
and simultaneous identification of the isotherm
parameters and mass transfer coefficients. In each

A

hypercube centered around the parameters 0, .

case, the mean, 0 ..., and the variance, var(0), of

mean

the parameters § estimated from all the initial
estimates, 0y, are calculated and the presence of local
- Gf) is

minima is analyzed. Indeed, when (6,

small and Var(é) is small as well, all the initial
values 6, can be considered to belong to the same
basin of attraction. Note that similar results are
obtained for isotherms with the same saturation
capacity or with different saturation capacities.

5.1. Identification of the isotherm parameters

With “true” mass transfer coefficients
When the mass transfer coefficients are assumed to

be known exactly, the variance of 6 is small and it
can be concluded that for all the considered initial

estimates, the parameters converge to the same
minimizer 0. Note that numerical oscillations may
introduce local minima (due to numerical difficulties
in resolving sharp spatial gradients) if the parameters
of the numerical integration algorithm are not
properly chosen.

With error on mass transfer coefficients

In this case, the mass transfer coefficients are not
equal to the values used for the generation of the
fictitious measurements. The magnitude of the error
introduced is obtained from the upper bound on the
initial estimate as described in section 3.4. Several
local minima are observed.

5.2. Identification of the isotherm parameters and
mass transfer coefficients

Several local minima are observed. However, the
values of the cost function at the optimum are smaller
than those achieved in the identification of the
isotherm parameters with erroneous (fixed) mass
transfer coefficients. The variances of the identified
isotherm parameters are also smaller and the mean

value of O are closer to 8. Moreover, for some
values of © and for some operating conditions, the
number of local minima obtained for the different
initializations of the optimization is also smaller.

5.3. Conclusions

In conclusion, despite the difference in the
sensitivities of the measurements with respect to the
isotherm parameters and with respect to the mass
transfer coefficients, it is advisable to identify the
mass transfer coefficients together with the isotherm
parameters instead of working with fixed erroneous
values of the mass transfer coefficients. As in
practice the error on the initial estimates of the mass
transfer coefficients is never equal to zero (cf. section
3.4), the simultancous identification of the mass
transfer coefficients and the isotherm parameters is
always recommended in order to obtain more
accurate parameters.

On the other hand, the parameters corresponding to
local minima may lead to large errors in the SMB
profiles and in the simulated purities. Even if the



profiles obtained with the operating conditions used
for the identification are acceptable, large errors may
appear in profiles calculated with other operating
conditions. For example, the error in purity may
increase by more than 10%. Hence, to find the
smallest cost function as possible, a multi-start
identification procedure, as the one used to study the
basin of attraction, should be performed.

6. COVARIANCE MATRIX OF THE ESTIMATED
PARAMETERS

Let éN denote the value of the estimated parameters
obtained by numerical optimization of the cost
function (5). Under some assumptions (Seber and
Wild, 1989), an estimate of the covariance of éN is
obtained from :
-1
fs 5 ]2 I@0 [ s ay(t.8y) ay(t.8y)'
E[GNGN " N-n 2 26 28 N

t=1

with 8 = éN -0 and n, the number of parameters to

estimate.
A typical covariance matrix obtained from the study
of the basin of attraction for the parameter vector

By =lgs b, b, k™ K¥| s given by
(Grosfils, 2004):

1.17e-8 2.46e-9  5.7e¢-9 -2.8¢-9  8.69¢-7
2.46e-9 1.25-9 1.48-9 2.38¢-9 2.29¢ -7
57¢-9 148e-9 295-9 -877e-10 4.15¢-7
—-2.8¢e—-9 2.38-9 -877e-10 222e-6 —-5.05¢-8
8.69¢—-7 2.29%-7 4.15¢-7 -505-8 1.6e—4

It is observed that the correlation between the
parameters is not negligible. Moreover, the variances
of the mass transfer coefficients are larger than the
variances of the isotherm parameters. This can be
explained by the differences in the magnitude of the
sensitivities. However, the variances are so small that

the confidence interval at 99% of éN(i) does not

contain 6(i), i=1,..., n, which is the parameter used
for the generation of the fictitious measurements. The
explanation of this observation requires further
investigation to check whether the assumptions
behind (6) are fulfilled.

7. CONCLUSION

An identification procedure for determining the
isotherm parameters as well as the mass transfer
coefficients of a kinetic SMB model with competitive
Langmuir isotherms from SMB experiments is
proposed. The main contributions of this paper are a
systematic identifiability study and the examination
of the basin of attraction to determine the influence
of local minima. Both studies allow to verify that the
parameters are structurally identifiable, to select the
appropriate measurements and to set up an
identification procedure. In future work, other

isotherm equations should be considered and the
procedure should be tested on experimental data.
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