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Abstract: This paper discusses the problem of guaranteeing both a nominal performance
and a degraded second-class control performance under actuators and/or sensors faults.
LMI, BMI and other possible solutions are investigated in a time invariant feedback
control framework. Also, the switching-on and shutting-down sequence of sensors and
actuators in centralised control strategies may be critical to ensure continuous stability
of the controlled plant. The advantage of measuring the actual input to the plant is also
discussed. A bank angle control example illustrates the procedure.Copyright ©2005
IFAC
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1. INTRODUCTION

Multivariable systems allow for a variety of solutions
in designing the control system. Usually, there is an in-
teraction among the control actions leading to a redun-
dancy in the control as well as in the information gath-
ered from the process and, for simple requirements,
different solutions are possible. This is clearly the
case in pole assignment design for both state feedback
control and state observer design: in a general case, the
freedom to determine the control law or the observer
gain can be used to get additional performances in the
controlled plant and additional constraints or require-
ments, mainly oriented to the internal structure of the
controlled plant or the robustness of the control.

In industrial control systems, the effect of the failure
of one element in the control loop (sensor or actu-
ator) should be analysed. Globalintegrity refers to
the property of keeping acceptable plant behaviour
under the failure of one of these components. The
concept is becoming more and more relevant (Campo
and Morari, 1994).

The general layout of a feedback controlled plant is
depicted in fig. 1, whereG represents the plant oper-

ator, Si the i-sensor operator connecting the process
variable yi and the measurementmi , C the control
algorithm including the control law as well as mea-
surements filtering, andHj is the j-actuator operator
converting the controller outputvj into the control
variableuj . For the sake of simplicity, the sensor and
actuator operators may be considered as unitary, their
properties being included in the plant operatorG.

The integrity of the controlled plant w.r.t. thei-sensor
requires the system stability under its failure, that is,
if the attached connecting line is opened. In other
words, the operator frommi to yi should be stable
and the degrading of the controlled plant performances
should be bounded. The integrity requirement can
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Fig. 1. Feedback control layout.



be extended to the failure of any subset of sensors
or actuators. Necessary conditions for integrity un-
der integral control can be obtained based on relative
gain array considerations (Campo and Morari, 1994).
An alternative approach to integrity-minded control
design appears in (Zhao and Jiang, 1998), and the
problem is closely related to the simultaneous sta-
bilisation one (Blondel, 1994). Fault-tolerant control
designs may include options for controller reconfigu-
ration (Jiang, 1994), however, the implementation of
fault detection and isolation algorithms and control
reconfiguration in a short reaction time to avoid tran-
sient instability issues is not a trivial task. Some of the
issues involved in controller commutation can be han-
dled by hybrid control design techniques (Koutsoukos
et al., 2000; Hespanhaet al., 2003).

The option of an “autonomous feedback reconfigu-
ration” has an advantage over supervision-based ap-
proaches because there is no need for a fault detection
mechanism, plus switching, plus a sort of “probing”
procedure to check if the defective actuator has been
recovered from a transient fault. On the other hand,
better performance can be reached by the nonlinear
supervision approach as the controller can be fully
redesigned for the faulty case.

This paper deals with the design of time invariant
feedback control systems with integrity properties.
That is, the set of controller requirements will include
the desired performances under different operating
modes but the controller will be fixed. The design
with integrity is stated as a problem of multi-mode
control design. Indeed, achieving control performance
on a family of plants is the basic concept of robust
control methodologies. In that area, the problem is a
long standing one with lots of solutions proposed in
literature. This paper discusses the practical insights
that can be extracted from the requirement ofdifferent
performance levels for different operation modes and
the easy adaptation of well-established techniques to
the problem under consideration. In some cases, the
solution can be interpreted as involving an implicit
reconfiguration in faulty conditions.

In the next section, the problem of state-feedback de-
sign with integrity regarding actuator faults is devel-
oped, with specifications set up as pole-region place-
ment. An approach including the operating conditions,
the faulty ones and the transient sequencing in the
switching-on/shutting-down of the control, is devel-
oped by solving a set of Linear Matrix Inequalities
(LMI) and, in some cases, bilinear ones (BMI). The
control of the bank-angle of the well-known model of
a jet aircraft, (Zhao and Jiang, 1998), illustrates the ap-
proach and some alternatives strategies are compared.

The design of state estimators with dynamic require-
ments expressed by the observer pole location, where
sensor faults are foreseen, is a dual problem to be
considered in Section 4. The separation principle can
be claimed if the actual inputs are measured. Indeed,

additional improvements in the global design can be
achieved if these inputs are measured, as pointed out in
Section 5 by considering redundancy in the actuators.
Some conclusions and suggestions are outlined in the
last section.

2. STATE FEEDBACK CONTROL

Usual robust control strategies aim for a prescribed
level of performance for any plant in a user-defined
set (robust performance). A variation, less common
in bibliography, is trying to simultaneously ensure a
certain level of performance for a plantG in a setG1,
and another one for plants in a setG2. This design
problem can be stated for several of these sets, as a
particular case of multi-model control. This option can
be investigated by using the freedom in the design
of the state feedback control law for pole placement
design requirements.

Given a linear time invariant plantG(s), with reali-
sation(A,B,C), the purpose is to design a fixed con-
troller K (u(s) = −K(s)y(s)) such that, some basic
requirements,S, are fulfilled. The freedom in selecting
the controller parameters will be used to ensure, if it
is possible, some reduced requirements,SMN for the
plant modelGMN under any subset of inputs and out-
puts,M andN, leading to the realisation matricesBM,
CN, respectively, or to determine that such a controller
is not feasible. The notationBM will denote either a
submatrix ofB, when multiplied byKM – a submatrix
of K– or a matrix with the same dimensions asB
setting the rest of the columns ofB to zero, when
multiplied by a full-sizeK.

In this section, the following simplifications are as-
sumed: 1)C = I , the full state is measurable, 2) only
changes in the input matrixB are considered, that is,
the plant model is in one ofGM, and 3) as a result of
the control requirements, a constant feedback law is
expected,K(s) = K.

Pole-region placement restrictions of a matrixAcl ,
ẋ(t) = Aclx(t), can be cast as an LMI problem involv-
ing a positive definite matrixP in the case the target
pole region is a convex subset of the complex plane in
a given form (Boydet al., 1994). In the case of dom-
inant pole restrictions,P corresponds to a quadratic
Lyapunov function with a particular decay rate.

For instance, a decay rate faster thanα is ensured if a
solver is able to find a quadratic closed loop Lyapunov
functionV(x) = xTPxso thatV̇ ≤−2αV This requires
findingP > 0 such that

PAcl +A′
clP+2αP < 0 (1)

In this setting,α = 0 amounts to specifying only
closed-loop stability.

However, in state feedback the closed-loop system
matrix, Acl = A− BK, is itself linear in the design
parameterK, so the overall setup is cast as a BMI



(VanAntwerp and Braatz, 2000). The feedback gain
u = −Kx can be found by solving the following BMI:

P(A−BK)+(A−BK)′P+2αP < 0 (2)

A standard change of variable (Boydet al., 1994)

Q = P−1, KQ = Y (3)

transforms (2) back into LMI form: a state feedback
u=−Kx exists so that the decay rate is at leastα if an
arbitrarym×n matrix Y and a positive definiten×n
matrixQ exists so that the following LMI is satisfied:

QAT +AQ−BY−YTBT +2αQ < 0 (4)

As above commented, this basic LMI can be mod-
ified to include other target pole regions and norm
bounds (H∞ or H2 performance)(Boydet al., 1994).
These more complex cases will not be considered here
for simplicity although the procedure would be com-
pletely analogous.

Multi-model system.Let us now consider the faulty
conditions. The same problem can be solved for each
operating condition,BM, leading to different matrices
PM and control lawsKM

PM(A−BMKM)+(A−BMKM)′PM +2αPM < 0 (5)

Thus, the control implementation would require the
detection of the faulty condition as well as the switch-
ing of the controller parameters. The above expression
amounts to solving separately (via LMI) each of the
possible operating regimes. To avoid the need of fault
detection and control switching, a commonK can be
sought in the above setup:

PM(A−BMK)+(A−BMK)′PM +2αPM < 0 (6)

However, the change of variable (3) no longer applies
and the problem is in this case a full BMI. An efficient
computation method (polynomial time) for solving
general BMIs is not available. The simplest one is the
P-K iteration (iterated solving of LMI conditions on
one variable considering the other as fixed); however,
that algorithm only converges locally, and it may even
not do so. Alternative algorithms are discussed in, for
instance, (VanAntwerp and Braatz, 2000; Zhenget
al., 2002) and references therein.

Different specifications (αM) may be considered for
different actuator faults. For instance, in a two actuator
case, three sets of BMIs may be specified: the fullB
and the nominalα, B1, (fault of actuator 2) stating
a performance level ofα1 and similarlyB2 (fault of
actuator 1) stating a performance levelα2.

Random faults.Stability under random changes of
operating regime isnot guaranteed (Hespanhaet al.,
2003) by the previous approach unless each regime is
active for a time significantly longer than the closed-
loop settling time. A conservative solution, by looking
for a commonP = PM for any actuator subsetM
and, as before, a commonK, is possible. In this way,
due to the common Lyapunov function, specifications
are guaranteed for arbitrary actuators coming in and

out of service at any instant. Nevertheless, faults in
industrial practice usually occur for times longer than
the loops time constant so the above requirement
might be overkill in many situations.

To solve combined requirements with different spec-
ifications as an LMI, the sameQ and Y should be
enforced for all models. The result is a set of LMIs
in the form:

QAT +AQ−BMY−YTBT
M +2αMQ < 0 (7)

QAT +AQ−BY−YTBT +2αQ < 0

whereM represents a set of LMIs for each considered
fault condition and the non-subscripted matrices de-
noting the nominal (all actuators working) situation.
So, a common Lyapunov function is sought, and the
approach is conservative (a solution to the slowly-
switching integrity problem may exist even if the
solver finds the LMIs unfeasible).

Sequential strategies.As previously mentioned, a
practical problem in setting up a control strategy is
the switching on, from manual to automatic, of the
different actuators in the control system. Even if the
global LMI/BMI approach fails a straightforward se-
quential strategy can ensure stability for some of the
partial actuator configurations.

Let us assume that the actuators are arranged inB
in the order they are going to be switched on. Then,
design a controller to place the poles ofA−B1K1 at
p1. Afterwards, a controller is designed to place the
poles of(A−B1K1)−B2K2 at a desired locationp2.
Successively, the process goes on untilA−∑BiKi has
its poles placed at the final targetpm. Assuming all
controllability requirements are verified, the solution
is unique and the design parameters are the sequence
of intermediate and final pole positions. In this way,
stability and a particular performance level can be
guaranteed if actuators are put in and out of service
in the particular sequence determined by the ordering
of the columns ofB. However, the rest of the configu-
rations must be explicitly checked.

Servo systems.In the previous designs, the target has
been specified by the closed-loop dynamic behaviour
(closed-loop poles). If the controlled system is stable,
all the (incremental) variables go to zero in the steady-
state condition. However, loss of availability of one
particular actuator may be understood as a change in
B plus a step input disturbance on that channel (as it
will be probably stuck in a constant value different
from the nominal operating point). To cope with this
issue, classical solutions based on integral actions can
be applied.

3. EXAMPLE: BANK ANGLE JET CONTROL

In (Zhao and Jiang, 1998), a “reliable state feedback”
control for a 4th order jet bank-angle dynamic model



is discussed, under the same actuator failure setting
as treated in this paper. The plant has two actuators
(aileron and rudder), and its model is:

y(s) = [G1(s)G2(s)]u(s) (8)

G1(s) =
1.1476s2−2.0036s−13.726

κ(s)
(9)

G2(s) =
10.729s2 +2.3169s+10.237

κ(s)
(10)

κ(s) = s4 +0.6358s3 +0.9389s2 +0.5116s+0.0037 (11)

Based on a canonical state space representation,
(A,B,C), a state feedback control,K, with the re-
quirement of decay rate of−.1 is sought. The Mat-
lab command “K=place(A,B,p)”, with poles atp =
{−0.1,−0.1,−0.15,−0.15}, yields the (non-unique)
possible solution:

K= -0.1926 1.0275 0.0453 -0.1147
0.0206 1.3814 -0.2925 -0.1142

Let us denote byB1 and B2 the matrix obtained by
setting to zero the columns 2 and 1 ofB, respectively
(i.e., denoting the situation with only actuator 1 work-
ing and only actuator 2, respectively). The integrity of
the proposed solution is not satisfactory: if the second
actuator fails, the system (A−B1K) becomes unstable.
This also points out the relevance of the first actuator
(Albertos, 2004) by using this solution.

Our purpose is then to design a feedback control law
such that, with the same relative degree of stability
(α at least−0.1), the controlled plant remains stable
if the control loop is opened at any of the actuators.
Moreover, we are also interested in checking the max-
imum achievable performance (decay rate) with both
actuators working while preserving integrity.

LMI solution. The following LMI problem is posed
according to specifications with the 4th order system
in the variablesQ > 0, Y, aiming for a decay rate in
the interval[α1,α2]:

QAT +AQ−B1Y−YTBT
1 < 0 (12)

QAT +AQ−B2Y−YTBT
2 < 0 (13)

QAT +AQ−BY−YTBT <−α1∗2Q (14)

QAT +AQ−BY−YTBT >−α2∗2Q (15)

With α1 = 0.1, α2 = 1.2 the problem renders feasible.
The state feedback gain found by MatlabKf b = YQ−1

and the closed-loop poles are:

K= -0.8194 -0.8179 0.3084 0.0868
2.4920 0.9824 -1.0740 -0.0926

eig(A-B*Kfb)
-0.4971 + 0.8387i -0.5626
-0.4971 - 0.8387i -0.2252

eig(A-B1*Kfb)
-0.1030 -0.4099 + 1.1755i
-0.5626 -0.4099 - 1.1755i

eig(A-B2*Kfb)
-0.1121 + 0.8334i -0.5626
-0.1121 - 0.8334i -0.1456

In the above case, a new LMI constraint to minimise
a bound on the singular value norm of the feedback
gain matrix was also enforced, and decreased until
no feasible solution existed. The gain guarantees the
decay rate of−.1 even if actuators are failing with
an arbitrary time pattern, improving the time-invariant
pole-based result of (Zhao and Jiang, 1998). Also,
Zhao’s results required a system augmentation to 6th
order.

Plant augmentation can be used to enforce integral
action, by adding an integrator at the output. On the
following, the resulting 5th-order realisation will be
used.

In this case, in order to improve the closed loop perfor-
mances under normal operating conditions, but with
guaranteed integrity (decay rate 0.02), a generalised
eigenvalue problem is posed on the augmented model:
maximisingα1 subject toQ > 0 and conditions (12)–
(15), with fixedα2 = 1.2. The resulting optimisation
determines that an achievable nominal decay rate of
0.155 can be obtained, remaining stable if any of the
actuators is disconnected. The closed-loop poles are
(−0.201,−0.196,−0.256) in the nominal,B1 andB2
cases respectively. Note that the time-invariant pole
figures (for the "permanent" fault case) are better than
the achieved value ofα. This arises from the conser-
vativeness of the shared Lyapunov function approach.

BMI solution.The nonexistence of a better LMI solu-
tion does not preclude finding it by another method-
ology. The alternating approach (P-K iteration with
progressively increasing decay rate specifications at
small steps) may provide a local solution to the full
BMI problem (with a differentP sought for each re-
striction, i.e., slow switching). Indeed, starting from
the previously obtained gain, the BMI approach finds
better solutions. After each successful iteration, the
nominal required decay rate is increased by a factor
of 1.0025 and the faulty ones by 1.003. The result is:

K=-4.602 -16.033 -12.529 -1.699 -1.665
-1.216 0.778 3.986 5.476 3.094

with dominant poles (-1.15,-0.834,-0.109) for each of
the three considered cases. The nested LMI conditions
kept feasible until the nominal decay limit was 0.637
and the fault one 0.109. So in this case, the iterations
seem to obtain reasonable solutions sensibly improv-
ing those from the LMI approach.

The step responses under a step input disturbance in
both channels (nominal performance) are depicted in
figure 2. Being at an equilibrium state, the loss of
actuator 2 can be understood as a step disturbance at
that input channel. The referred step response (cutting
the feedback path before actuator 2 so only actuator
1 remains in operation) appears in Figure 3. The
converse situation when only actuator 2 is available
is plotted in figure 4. Note that closed-loop stability
under arbitrary patterns of actuator availability cannot
be guaranteed.
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Fig. 4. Transient if actuator 2 is working and 1 fails.

4. OBSERVER DESIGN

The pole assignment approach to design a state ob-
server such as

˙̂x(t) = Ax̂(t)+Bu(t)+L(y(t)−Cx̂(t)) (16)

is dual to the state feedback control design described
in Section 2. A BMI setting similar to (2) can be
defined as

P(A−LC)+(A−LC)′P+2αP < 0 (17)

and, givenA andC, find the observer gainL to get a
decay rateα of the observed state error.

Sensors faults.This solution does not guarantee any
integrity w.r.t. the failure of one sensor. Following
the same approach previously described and allowing
a slower convergence of the observed state, an LMI
setting similar to (7) can be used,

PA+ATP−YCN −CT
NYT +2αMP < 0 (18)

PA+ATP−YC−CTYT +2αP < 0

leading to an observer gainL = P−1Y. Nevertheless,
the estimation errorx− x̂ can be shown to behave
according to the equation:
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Feedback-reconfigurable
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Fig. 5. Feedback of the actuator output.

ė= (A−LNC)e+L(I −N)Cx̂ (19)

Thus, this error only converges to zero in the nominal
case (N = I ). Otherwise, supervision is needed so that
the term that multiplies ˆx at the right hand side goes to
zero.

If sensors and actuators failures are considered alto-
gether, the global control schema would be:

˙̂x(t) = Ax̂(t)+Bu(t)+L(m(t)−NCx̂(t)) (20)

v(t) = Kx̂(t) u(t) = Mv(t) m(t) = NCx(t)(21)

The usual separation principle approach (controller,
observer) does not hold in this framework and the de-
sign ofK andL must be done simultaneously. Again, a
supervisory level would be necessary. This implies the
controller being time-varying. Thus, as commented in
the introduction, other procedures could lead to better
results.

5. ACTUATORS OUTPUT MEASUREMENT

In the case of actuators failure, if measurement of
input variables is available, the performance and fault-
tolerance properties of the state feedback approach
can be extended, due to two reasons: the consider-
ation of actuator dynamics may be significant when
extending the performance specifications, and more
information is available for reconfiguration, so that
an actuator subsystem reconfigured by feedback can
be designed, as in Figure 5, with the fault matrixM.
There is no additional theory, apart from extending the
state vector to incorporate actuator dynamics. How-
ever, some interesting options appear, as shown in the
following illustrative example.

Example.Let us consider the academic simple system
1/(s+1)2, represented in canonical controllable form.
Approximately, theK achieving pole-placement at
−7, is

K = 48.1400 12.0200

whose norm is 50. Deemed acceptable, the objective
is inserting a redundant actuator trying to improve
performance when both are connected, and keeping
the poles when only one is working at close to the one-
actuator design.

Assume a double identical actuatorB = [0 0;1 1].
To achieve the same type of nominal response, aK



roughly (duplicated) half of these would be a reason-
able starting point,K′ = [K/2;K/2]. Its norm is 35
and, of course, the nominal behaviour is identical to
the one-actuator setting. The faulty behaviour, how-
ever, has−4 as dominant pole.

Keeping the norm bound inK, a BMI approach will be
pursued, increasing by small steps the integrity decay
rate limit until BMI iterations fail to find a feasible so-
lution. Unfortunately, the final gain is almost identical
to K′ indicating that nothing can be done, apparently.
The alternative, other than allowing a higher gain, is
to measure the input.

Let us explore the input measurement enhancement,
with 1st-order actuators having gain 1 and pole at
−40. The state-space matrices are suitably augmented,
and the starting point for new BMI iterations isK′
(extended by zeroes). In this case, due to the actuator
dynamics, the closed-loop dominant poles are at−5.5
and−4.4 in the nominal and faulty situations: note the
degradation when including actuator dynamics into
the previous results.

BMI iterations are carried out progressively increasing
performance specifications until both the nominal and
faulty performances have a guaranteed decay greater
than−6.9. The result places dominant poles at−6.99
and−7.02 in the nominal and faulty cases respectively
with gain:

K= 16.299 3.8941 -0.5199 0.3053
16.299 3.8941 0.3053 -0.5199

To interpret the result, let us separate the analysis of
the state feedback and feedback-actuator subsystems
(Figure 5): Closing the actuator subsystem and carry-
ing out some elementary operations, the control action
in the nominal case can be written as:

v = −16.299x1−3.8941x2; u1 = u2 =
40

s+31.42
v

so that, at low frequency, it is approximately:

u1 = u2 = −20.75x1−4.96x2

i.e., a solution behaving similarly toKN above has
been found (better, in fact, as it takes actuator dynam-
ics into account). In the faulty case, closing the loop
with one of the actuators outputting zero, the result is
v = −16.299x1−3.8941x2, u1 = 40

s+19.21v, u2 = 0. At
low frequency, it approximates:

u1 = −33.95x1−8.11x2

so the system has automatically “reconfigured” and
increased its gain to keep performance. Of course,
an “optimal” fault detector would have increased the
gain 100%, but the found solution lies pretty close and
keeps the same decay rate in nominal and faulty cases,
being that the primary design objective.

6. CONCLUSION

This paper has discussed the practical importance
of integrity requirements, posing the problem in the
particular case of state feedback under actuator faults.
The suitability of BMI, LMI and sequential pole-
placement strategies has been discussed, and a jet
control example has been presented. In a similar way,
dual state estimation problems can be studied and the
treatment can be easily extended to the sensors’ fault
condition. The results seem promising.

The main advantage of this approach with respect to
the classical hybrid control solutions is that the control
feedback law is time invariant. Thus, detection and
isolation of faults in the devices (sensors and actu-
ators) is not needed and commutation of controllers
is not required. Integral action is needed to ensure
setpoints are maintained.

Nevertheless, the stability of some of the solutions rely
on different Lyapunov functions for each operating
condition. Thus, the BMI results are not valid for
arbitrary times of in and out of service events. This
issue does not arise if only LMI formulations are used.
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