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Abstract: Irrigation canals have a series structure which is generally used to design
multivariable controllers based on the aggregation of decentralized monovariable
controllers. SISO controllers are designed for each canal pool, assuming that the
interactions will not destabilize the overall system. It is shown that, when the
canal pools are controlled using the discharge at one boundary, the multivariable
decentralized control structure is stable if and only if the SISO controllers are
stable. The performance of the multivariable system is also investigated, and it
is shown that the interactions decrease the overall performance of the controlled
system. This loss of performance can be reduced by using a feedforward controller.
Experimental results show the effectiveness of the method. Copyright c©2005 IFAC
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1. INTRODUCTION

Irrigation canals are used to convey the water
from its source (a river, a dam) towards its users
(pumping stations or individual farmers). Manag-
ing irrigation canals efficiently i.e. satisfying water
users and at the same time minimizing the losses
of water resource is an increasingly important
issue. It is recognized that automatic control can
improve the management of irrigation canals.

An irrigation canal is a multivariable system pre-
senting strong interactions between subsystems.
However, a wide number of applications and
many publications use a decentralized technique
to design controllers for irrigation canals (Weyer
(2002), Seatzu (2000), Schuurmans (1997), Del-
tour and Sanfilippo (1998), Baume et al. (1999),
Reddy et al. (1992)). In these cases, simple con-
trollers are first designed for each canal pool, and
are used together in order to control the overall
system. Usually, the classical distant downstream
control policy is chosen for each pool, where the
downstream water level is controlled using the

upstream discharge. This is a monovariable con-
troller design problem, usually solved with simple
PI controllers. Feedforward controllers are then
added in order to reduce the interactions between
each canal pool (Schuurmans (1997), Jreij (1997)).
Such a design method usually gives a correct
controller for the whole system, since the system
appears to be stable. However, this method has
never been analyzed using modern automatic con-
trol tools (Skogestad and Postlethwaite (1998)).

Why do essentially monovariable techniques work
on a multivariable system? In this paper the anal-
ysis of the question is done using theory and
classical control tools. A systematic and rigorous
methodology for analysis and design of linear de-
centralized controllers for a canal with multiple
pools taking into account the interactions between
each pool is proposed. It is explained why the
decentralized control method leads to a stable
multivariable closed-loop system. The robustness
and the performance of the closed-loop are also in-
vestigated. It is shown that the static feedforward



controller classically used by hydraulic engineers
can be improved by using a dynamic controller.

2. PROBLEM FORMULATION

An irrigation canal can be represented as a series
of pools (see figure 1). Each pool represents a
portion of canal between two hydraulic structures
(gates or weirs for example). For the ith pool,
we denote ui the control variable (discharge) at
the upstream end, ui+1 the control variable at the
downstream end, yi the controlled variable (water
depth at the downstream of the pool i) and di the
load disturbances (water offtake).

Fig. 1. Schematic longitudinal view of an irrigation canal

2.1 Modelling of the canal

The dynamics of each canal pool can be modelled
by the so-called Saint-Venant equations, which
are hyperbolic non-linear partial differential equa-
tions involving the discharge Q(x, t) and the water
depth Y (x, t) along one space dimension (Chow
(1988)). The hydraulic structures separating each
pool are modelled by static nonlinear equations.
We consider in the following a linear model of the
canal, based on linearized Saint-Venant equations
and linearized hydraulic structures equations.

2.1.1. Linear model based on the Saint-Venant
equations The linearized Saint-Venant equa-
tions are used to obtain a transfer matrix repre-
sentation of the system in the Laplace domain (as
in Litrico and Fromion (2002)). The canal pool is
then represented by:

yi(s) = Gi(s)ui(s) + G̃i(s)(ui+1(s) + di(s))

where the disturbance di(s) (corresponding to
the unknown withdrawal) is supposed to act ad-
ditively with the downstream discharge. It has
shown in Litrico and Fromion (2002) that the
transfer functions have the following inner-outer
factorization:

Gi(s) =Gio(s)e
−τis

G̃i(s) = G̃io(s)

with τi the time-delay for downstream propaga-
tion and where Gio(s) and G̃io(s) are ‘outer’. The

delay τi is obtained by τi =
∫Xi

0
dx

C0+V0

, where Xi

is the length of pool i. C0 =
√

gA0

T0

is the wave

celerity (m/s), with T0 the top width (m), A0 the
wetted area (m2), g the gravitational acceleration
(m/s2) and V0 =

Q0

A0

is the velocity (m/s) with Q0
the discharge (m3/s) across section A0. (The index

0 is related to all terms in equilibrium regime).

2.1.2. Hydraulic structures We assume in the
following that irrigation canals are controlled with
the discharge at the boundary of each canal pool.
However, in practice, canals are controlled using
hydraulic structures (gates, weirs), represented by
static nonlinear equations. The control structure
therefore assumes that there is a slave controller
on each hydraulic structure that is used to deliver
the required discharge.

2.2 Distant downstream control policy for an
irrigation canal

Many control policies have been proposed for the
control of irrigation canals. A classification of
canal control algorithms was made in Malaterre
et al. (1998). We will present a classical control
policy: the distant downstream control, which en-
ables to have a parsimonious water management.
Then, we will study and analyze the robustness
and performance of the closed-loop system in this
case.

Distant downstream regulation of a canal pool
consists in controlling the downstream water level
yi using the upstream control variable ui (see fig-
ure 2). A schematic representation of the system

Fig. 2. Distant downstream control of one pool

for control purposes is depicted in figure 3. ri is
the reference signal, ei the tracking error, and Ki

the transfer function of the controller.

Fig. 3. Closed-loop system: Distant Downstream control

The sensitivity transfer function can be expressed
by: Si = (1+GiKi)

−1. The disturbances rejection
is directly characterized by the modulus of the
transfer function −G̃iSi. The control objective is
to find a linear controller Ki such that



|G̃i(jω)Si(jω)| =

∣
∣
∣
∣
∣

G̃i(jω)

(1 +Gi(jω)Ki(jω))

∣
∣
∣
∣
∣
≈ 0

over the largest frequency bandwidth.

3. ANALYSIS OF MULTIPLE POOLS CANAL
SYSTEM WITH DECENTRALIZED

CONTROL

As already stated in introduction, a wide number
of applications use a decentralized method to
design controllers for multiple pools irrigation
canals. It is therefore of great interest to analyze
these classical methods with automatic control
tools. We will study in this section the robustness
and the performance of a multiple pools canal
through the maximum singular value of the plant
transfer matrix. Since disturbances are not known
and are independent, the maximum singular value
provides a good way to estimate the robustness
and performance of the control system.

3.1 Distant downstream decentralized control of
two pools system

For simplicity, but with no loss of generality, let
us assume that the irrigation canal is composed
of two pools in series, i.e. two SISO subsystems
(see figure 4). It is simple to conclude that pool 1
will be affected by the control variable u2, which
acts as a disturbance on pool 1 because of the
interaction between pool 1 and pool 2. When
disturbance occurs in pool 2 the control variable
u2 acts on the gate situated at the upstream end
of pool 2 in order to compensate the disturbance
d2. This produces a disturbance in pool 1 and the
control variable u1 acts at the gate situated on the
upstream end of pool 1.

Fig. 4. Decentralized Distant Downstream control of two

pool system

3.1.1. Stability and robustness analysis Taking
into account the interactions between the SISO
subsystems, the tracking errors e1 and e2 of the
MIMO system are as follows:

e1 = S1r1 − G̃1S1d1 + G̃1S1K2G̃2S2d2

e2 = S2r2 − G̃2S2d2

Denoting: M1 = −G̃1S1 and M2 = −G̃2S2
the relation between tracking errors e1, e2 and
disturbances d1, d2 can be expressed as follows:

(
e1
e2

)

=

(
M1 M1K2M2

0 M2

)

︸ ︷︷ ︸

M

(
d1
d2

)

(1)

Since the transfer matrix M is upper triangu-
lar, the decentralized multivariable system natu-
rally inherits the stability and robustness prop-
erties of the monovariable systems. Therefore,
the multivariable system is stable if and only if
all monovariable systems are stable. The mono-
variable input margins are also recovered in the
multivariable case (Skogestad and Postlethwaite
(1998)). This explains why the traditional de-
centralized control structure associated to distant
downstream control with control inputs using dis-
charge at the boundary works for irrigation canals.

3.1.2. Performance analysis We now investi-
gate the performance of the multivariable system,
by using the maximum singular value. One has:

‖e(jω)‖ = ‖M(jω)d(jω)‖ ≤ σ̄(M(jω))‖d(jω)‖ (2)

where σ̄(M(jω)) is the maximum singular value
of the transfer matrix M(jω).

By definition of the maximum singular value, we
know that there exists a couple (d̄1(jω), d̄2(jω))
such that the inequality (2) becomes an equality
(the worst case perturbation). Since in the case of
irrigation canals the perturbations are unknown,
the maximum singular value is a good estimate of
decoupling properties of the controlled canal.

Let us now characterize for a given frequency ω
the maximum singular value of M(jω), which is
the square root of the maximum eigenvalue of
M(jω)M(jω)∗, denoted

M(jω) =

(
|M1|

2 + |M1K2M2|
2 M1K2|M2|

2

|M2|
2K∗

2M
∗

1 |M2|
2

)

where all transfer matrices are evaluated at jω.
M∗ denotes the transpose conjugate of M . In
order that the interconnection does not degrade
the performance, one would require:

σ̄(M(jω)) ≤ max(|M1(jω)|, |M2(jω)|) (3)

Let λ1 and λ2 be the eigenvalues of the matrix
M(jω). Their product is independent of the cou-
pling: λ1λ2 = |M1|

2|M2|
2 and their sum λ1 +

λ2 = |M1|
2 + |M2|

2 + |M1|
2|K2|

2|M2|
2 is always

greater than |M1(jω)|
2 + |M2(jω)|

2. Therefore,
one has necessarily:

σ̄(M(jω)) > max(|M1(jω)|, |M2(jω)|)

which is in contradiction with inequality (3).
Thus, the interaction between coupled subsystems
necessarily decreases the performance of the over-
all multivariable system. A possible way to reduce
this interaction is to use a feedforward controller.



3.1.3. Feedforward controller The feedforward
controller generally used in the case of irrigation
canals has the following structure, depicted in
figure 5. The “perturbation”, generated by the
interaction of the second pool on the first pool,
is perfectly known, since it corresponds to the
control input u2. It can be compensated by adding
a feedforward term to the control structure. In

Fig. 5. Decentralized Distant Downstream control of two

pools system with feedforward controller

this case, the transfer matrix M becomes:

MF =




M1 M1K2M2

(

1 +KF

G1

G̃1

)

0 M2





The interactions between pools are expressed here
by the non-zero offdiagonal element in matrixMF .
The perfect decoupling objective is then achieved

if: KF = − G̃1

G1

. Assuming that transfers G̃1 and

G1 are given respectively by: G̃1(s) = − 1
Ad1

s

and G1(s) = 1
Ad1

s
e−τ1s, then KF (s) = eτ1s is a

predictor, which is non causal.

To restate this problem in a rigorous way, the
decoupling objective is obtained by minimizing
the coupling term in matrix MF (jω)MF (jω)

∗,
denoted:

MF (jω) =

(

|M1|
2 + |M1K2M2Q|

2 M1K2Q|M2|
2

|M2|
2Q∗K∗

2
M∗

1
|M2|

2

)

with Q(jω) = 1 + KF (jω)
G1(jω)

G̃1(jω)
the coupling

term. We now search a feedforward controller
Kd

F (jω) such that the term Q(jω) is minimal.
This can be expressed as a H∞ minimization

problem: α = infKF (s)∈H∞

∥
∥
∥1 +KF (s)

G1(s)

G̃1(s)

∥
∥
∥
∞

.

However, this does not lead to an interesting
result, since Tannenbaum (1992) proved that:
infKF (s)∈H∞

‖1 − KF (s)e
−τ1s‖∞ = 1. Therefore,

it is not useful to minimize this norm over all
frequencies, but it is necessary to specify a given
frequency range where the decoupling should oc-
cur. In this case, a weighted H∞ norm has to be
considered.

In practice, hydraulic engineers use a constant
gain (between 0.5 and 1). In this case, a gain of
1 should be chosen, since if KF (jω) = 1, then
‖1 − e−τ1jω‖ ≈ 0 for ω ≈ 0. However, there
exists frequencies where e−τ1jω ≈ −1 which lead
to |1 −KF (s)e

−τ1jω| ≈ 2. This is why a lead lag
filter approximating eτ1s over a given frequency

range could lead to a better decoupling than a
constant gain.

Remark: [Impact of delay uncertainty] Let us ex-
amine how a feedforward controller behaves when
trying to compensate the effect of a sinusoidal
perturbation known in advance p1(t) = a sin(ωpt)
at the downstream end of the pool. Then, the
feedforward controller leads to KF (jωp) = eτ1jωp ,
which means that the control input should be the
perturbation with a phase lag equal to φ = τωp.
If the delay is not known precisely, but τ ∈ [τ1 −
∆τ, τ1 + ∆τ ], then the possible phase lag due to
this uncertainty is given by ∆φ ∈ [−∆τωp,∆τωp]
and for all frequencies such that ω > ω∗

p , with
ω∗p = π

∆τ
, the sign of the feedforward control

input is not known. In this case, a feedforward
control could end up with doubling the perturba-
tion rather than compensating it. A low pass filter
should be added to the feedforward to eliminate
such a problem.

4. EXPERIMENTAL VALIDATION

After this theoretical analysis we test and validate
the decentralized multivariable PI control in real
conditions in the case of a distant downstream
control policy.

4.1 Canal description

The canal used in the present study is a compo-
nent of the experimental facility of the Hydraulics
and Canal Control Center (NuHCC) of the Uni-
versity of Évora (Portugal). The experimental
canal is a trapezoidal and lined canal, with a
general cross section of bottom width 0.15 m, sides
slope 1:0.15 and depth 0.90 m. The overall canal is
145.5 m long and the average longitudinal bottom
slope is about 1.5× 10−3. The design flow is 0.09
m3s−1. There is an offtake di at the downstream
end of each pool. We consider a two pools system
(see figure 4). The canal inlet is equipped with a
motorized flow control valve, that delivers a dis-
charge u1 with the use of a local slave controller.
An intermediate rectangular sluice gate, opening
u2, is used to control the inflow into reach n. 2.

4.1.1. Integrator Delay Zero (IDZ) model In
order to design linear controllers and use classical
tuning techniques we propose an analytical model
of the system. A simplified model can be obtained
following Litrico and Fromion (2004), by mak-
ing suitable simplifications about the backwater
curve. This leads to an Integrator Delay Zero
(IDZ) approximation of transfer function Gi(s)
and an Integrator Zero approximation of transfer
function G̃i(s), leading to the frequency domain
model:

y1 =

(
1

19.8s
+ 1.64

)

e−31.8su1 −

(
1

19.8s
+ 1.86

)

u2

y2 =

(
1

18.7s
+ 1.68

)

e−35.5su2 −

(
1

18.7s
+ 1.88

)

u3
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Fig. 6. Comparison: ’complete’ Gi(s) (left), G̃i(s) (right)

transfers (-) and ’approximated’ (IDZ) transfers (-.-)

In order to show the accuracy of this approximate
model we compare the ’complete’ Gi(s) and G̃i(s)
transfers with the approximated transfers for the
whole canal. As can be seen in figures 6 the
approximate model fits very well the ’complete’
model.

4.2 Controller design

Based on the previous analysis, we propose in the
sequel a rigorous methodology to design a multi-
variable decentralized controller for an irrigation
canal. First SISO distant downstream filtered PI
controllers are tuned for each reach of the Évora
canal. Then a robustness and stability analysis
is done for each SISO system. We evaluate the
relative performances of the control system with
and without feedforward controller.

4.2.1. Linear controllers PI controllers are widely
used in industry owing to their simplicity. We de-
sign filtered PI controllers for each reach in order
to meet gain and phase margin specifications (gain
margin of 10dB and phase margin of 60◦) and
to reject the load disturbance (offtake). The PI
controllers have the following transfer function:

K1(s) = 0.31

(

1 +
1

256s

)

K2(s) = 0.26

(

1 +
1

45.45s

)

Controller parameters are tuned using a classical
method proposed by Skogestad (2003).

4.2.2. Robustness analysis The use of a model-
based method enables to easily evaluate the ro-
bustness of the control scheme by considering a
family of linear models (in our case corresponding
to different discharges). This analysis showed that
the closed-loop system is stable for discharges
varying from 10 to 80 l/s, which is a wide variation
around the reference discharge (45 l/s).

4.2.3. Controller implementation The second
pool of the canal is controlled with a rectangu-
lar sluice gate. Therefore, a method is needed to

convert the computed discharge u2 into a gate
opening. Many different possibilities have been
proposed in the literature (Malaterre and Baume
(1999)). We tested experimentally various meth-
ods. Finally, we selected the simplest one, i.e. a
local linear inversion of the hydraulic structure
law.

4.3 Downstream PI robust control of two pools

In order to validate the proposed methodology,
we compare experimental results with linear sim-
ulation (done in Matlab with the simplified IDZ
model).

4.3.1. Without feedforward controller Figure 7
gives the experimental results obtained with the
decentralized distant downstream controller. The
control sample time is Ts = 0.125s. A downstream
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Fig. 7. Distant downstream control of two pools in series:
experimental results (-) and linear simulation (-.-)

withdrawal d2 of 10 l/s is done at time t = 2000 s
and stopped at time t = 2800 s. The decentralized
controller reacts as expected: first the gate at the
upstream end of pool 2 opens gradually in order
to compensate the withdrawal occurred at the
downstream end and brings back the output y2
at the target yc = 0.6 m. This opening produces a
disturbance at the downstream end of the pool 1
and the water depth y1 has a similar variation as
water depth y2. The discharge (input u1) increases
in order to compensate for the withdrawal.

4.3.2. With static feedforward controller The
same experiment is repeated using a static feedfor-
ward. In figure 8 the downstream withdrawal d2
of 10 l/s is done at time t = 300 s and stopped at
time t = 750 s. The decentralised controller reacts
correctly as in the case without feedforward con-
troller. The essential difference can be observed for
the variations of the water depth y1. The output
y1 is much less sensitive to the disturbance d2 that
occurred at the the downstream end of pool 2.
The water level y2 is much closer to the target
level yc = 0.6 m. Thus, the feedforward controller
improve the disturbance rejection. In both cases
the linear simulations reproduce rather accurately
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Fig. 8. Distant downstream control of two pools in series

using a feedforward controller: experimental results

(-) and linear simulation (-.-)

the dynamic behavior of the closed-loop systems.
This is remarkable, since the process includes
actuators nonlinearities and measurement noise.
This validates our approach, from the modelling
part (which is based on Saint-Venant equations)
to the decentralized control method, that gives a
satisfactory answer to the problem of irrigation
canal management.

5. CONCLUSION AND FUTURE WORK

The paper has provided a detailed analysis in
terms of stability, robustness and performance
of decentralized controllers for irrigation canals.
We have shown that, considering that the canal
pools are controlled using the discharge at the
boundary, i) the multivariable decentralized con-
trol structure is stable if and only if the SISO
controllers designed for each canal pool are stable,
ii) the robustness properties of the monovariable
control systems are recovered by the multivari-
able control system for structured diagonal input
uncertainties, iii) the interactions decrease the
overall performance of the controlled system, iv)
this loss of performance can be minimized by using
a feedforward controller.

These results apply for distant downstream con-
trol structures and are experimentally validated
on a real canal located in Portugal.

Future works will consider the stability analysis
of mixed control policies, where in one pool both
local upstream and distant downstream control
are used.
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