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Abstract: Many robotics applications involve teams of agents that have to act
in a cooperative manner, often corresponding to several tasks to accomplish. For
dynamic vehicles, with an adverse and thus strategic context, the nature of the
optimization problem is hybrid and gathers allocation and optimal trajectories
problems. In this paper a mixed integer linear programming approach is developed
to bring a solution to these types of strategic issues, facing the challenge of finding
a real-time solution. The problem is presented with the context of RoboFlag,

motivated by the hardware implementation at Caltech. Copyright

© 2005 1FAC.
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1. INTRODUCTION

In many decision problems, several kinds of
choices have to be done. For instance, in air traf-
fic control (Bayen and Tomlin, 2003), decisions
correspond to discrete and continuous variables
(order and times of landing for a set of airplanes).
Similar issues arise in the field of cooperative
control where several agents have to act together
optimally to accomplish several tasks, in particu-
larly when a strategic dimension appears.

In order to validate experimentally theoretical
advances in this domain, RoboFlag, a “Capture
the Flag”-like game has been developed at Cal-
tech, using the multi-vehicle Laboratory. In a few
words, the game involves two teams whose goal is
for each one to protect its own flag located in its
”home zone” and to try to seize the flag of the
other team without being "tagged” or intercepted
by an opponent. Precise rules can be found in

(D’Andrea and Murray, 2003). As an adversary
game, each team has to take strategic decisions
that depends on the situation of its opponents.
Due to the number of vehicles, a basic solution
is quite hard to build, therefore, the autonomous
control system has to have a high level control
procedure able to take strategic decisions. This is
precisely the problem addressed here by focusing
on a cooperative defense strategy in the context
of the RoboFlag application.

To make the game closer to real-world appli-
cations, the agents considered here have highly
dynamic properties and only a local vision of
the field. This has deep consequences in terms of
strategy because decisions have to be taken in a
dynamic and only partially known environment. A
hybrid nature for the problem arises because the
defense team has to decide, at a same time, how
to explore the environment and how to intercept
the attackers previously observed. Here, instead



of decomposing the problem, a unique description
would be prefered. The mixed integer linear pro-
gramming (MILP) can handle this type of hybrid
problem. This technique has already been used
in the area of control to deal with problems of
collisions in multi-vehicles applications (Richards
and How, 2002). Here, the nature of the problem
can often change since new attackers can be de-
tected. The originality of this approach is to apply
a MILP formulation for a strategic problem whose
nature is subject to frequent changes.

This paper begins by a description of the problem
in RoboFlag context, followed in section 3 by a
presentation of a first algorithm whose purpose is
to serve as a reference to compare performances
of algorithms. The MILP formulation is exposed
next. Section 5 gathers some implementations
issues and summarizes the results. Finally, some
conclusions and perspectives are discussed.

2. PROBLEM FORMULATION

This section describes the problem in the context
of RoboFlag, the application that motivates this
study. First, the field on which the agents can
move is modeled by a rectangular shape of width a
and height b whose middle of the bottom edge will
be the origine. Thus, the coordinates (x,y) for a
given object on this field satisfy: —a/2 < z < a/2
and 0 < y < b. Two set of agents can act, the
defense team, which will be referred to the blue
team, tries to protect a zone called the “Defense
zone”, whereas, the goal of the other team, the
attack team (also called the red team), is to
penetrate into this zone. This corresponds to the
adversary nature of the game. Here, the “Defense
zone” will be represented by the area below the
bottom edge of the rectangle. Thus, the goal of the
defense team is simply to prevent any attacker to
cross the bottom line Z or defense line from now
on, where Z = {(z,y)| —a/2 <z < a/2,y = 0}.

In this model, the defense team considered is
composed of K agents with particular properties
whose purpose is to reflect the main characteris-
tics of RoboFlag from a strategic point of view.
First, the vision capacity is restricted to a rect-
angular shape: for a given agent k in (x,yx),
an opponent situated inside {(z,y)|zr — wi/2 <
z < zp+wr/2,yr <y < yp + hi} is detected
by this agent (with hg < b). A defender can also
intercept or tag, in RoboFlag terminology, an op-
ponent if they are located in a close neighborhood
from each other. This can be parameterized, for a
given agent k, by a “tagging range” g;: a defender
can intercept the attacker located in (z,y) if its
position (zy,yy) satisfies zp — gr/2 < = < 1, +
gr/2 and yr = y. Furthermore, it is assumed
that there is no restriction and delay in terms of
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Fig. 1. Model of the RoboFlag defense problem (In
blue the defense team, in red the attackers).

communication: any information is immediately
shared within the team. A synthetic description
can be viewed on figure 1.

In RoboFlag application, the agents are vehicles
with nonlinear dynamics, however a linearization
of the problem gives a good approximation. A
restriction to only one dimension is also a rea-
sonable hypothesis since in the application, the
robots have to defend a circular zone by patrolling
around it. Thus, the defenders are restricted here
to move on the x-axis (yx = 0,Vk). Here, to sim-
plify the presentation without losing the essence
of the problem, a simple and discretized over time
dynamic will be considered: V¢, Vk € [1, K]

ottt =2t 4+ ult with b € [—Umaz; Umae) (1)

Given this presentation, the goal for the defense
team is to intercept any potential attacker that
would reach the defense line. Generally speaking,
in any strategic game, a player has to have an
idea on how his adversary takes its decisions to
choose his optimally. Here, it is not claimed to
design a strategy of defense that can cope with
the cleverest ways of attacking. The goal is rather
to show, given a simple model for the attack, how
to find an optimized strategic behavior to respond
to this threat. Thus, before going further, a model
for the attack has to be defined.

2.1 A model of attack

As a first model, the attack team considered is
composed of M agents whose motion is dictated
by precise and simple rules. Any attacker m,
whose position at time ¢ is repered by (X}!,,Y}!),
starts at a random time t9, from the top of the
field (er;" = b). Xf,g" is randomly chosen on
[—a/2;a/2] according to a uniform distribution.
The random value t°, is built with the following
principle: at time t if t0, is still not defined,
either t° = ¢t + 1 or it remains undefined with



probability p and 1 — p respectively. It is also
assumed that the attackers cannot move across
the x-axis (X! = Xp,Vt > t°). On the y-
axis, the dynamic is similar to the one of defense
and the attackers move at maximum speed in
direction of the defense zone: Vi = V! — w4,
As soon as an attacker has reached the defense
line, it can begin a new attempt, according to
the same independent laws described above. Thus
all agents act independently from each other.
Roughly speaking, the model of attack considered
consists of independent agents starting at random
times, uniformly distributed over the x-axis that
move straight in the direction of the defense line
until they have reached it.

2.2 Ewvaluation of performances

Since here the goal is rather to get the best
behavior on average, a natural way to measure the
performances of strategies is to have a statistical
approach. This corresponds to observe a great
number of sequences of the game and simply
record the number of opponents the defense team
was able to intercept. A rate of interception can
be easily used to assess the various strategies.

3. A NAIVE SOLUTION

Generally speaking, given a problem or a task to
accomplish for which the level of optimality is
difficult to assess, the way to make an evaluation
is to compare, or at least to have a reference
so that the performance become relative. Here
as well, a reference, a basis to assess optimized
strategies, has to be built. The idea is to find a
naive algorithm based on basic principles that can
provide a first solution. The challenge is then to
find a better solution and compare the difference,
knowing the level of complexity introduced in
the naive algorithm. In this problem, due to the
limited sensing capacity, the team has to explore
the environment to detect its opponents, and then
to intercept them. By assuming that it is always
better for the defense team to intercept a known
target rather than to discover other opponents,
the following rules can be applied as an algorithm
for any agent k of the defense team:

e if the defender k has detected an attacker
denoted by m (interception mode), it moves
in a constant direction until its position xj
satisfies =, — gx/2 < X < zp + gr/2
(condition for interception). Then, it waits
here until the interception (yr = Y,, = 0)

e else (exploration mode), given an initial way
of motion, it moves in this direction until
it has reached its neighbor corresponding to
that direction (more precisely, the definition

of “reaching its right neighbor”, for instance,
corresponds to the condition zj + wy/2 >
ZTp+1 — Wk+1/2). Then, it starts moving in
the opposite direction.

For k = 1 and k = K respectively, the natural
extension is made by adding the extremities of
the field as left and right neighbors respectively
(xo = —a/2 and zgy1 = a/2). Obviously, this
algorithm is suboptimal and even with extra basic
principles it is clear that a better algorithm can
be designed; it has to be viewed as a reference for
comparing more powerful algorithms.

4. FORMULATION AS A MIXED INTEGER
LINEAR PROGRAM

4.1 Stakes and advantages for a strategic problem

To find a reliable strategy for this problem, a natu-
ral way is to consider it as an optimization formu-
lation. Two difficulties arise with that approach:
first, because of the limited sensing capacity, the
structure of the problem to solve is dynamic
since at each step of time, new opponents can
be observed leading to a real-time optimization
problem. Secondly, the nature of the optimization
problem comprises actually two components:

e a resource allocation problem: which de-
fender is going to intercept a given target?

e a path planning problem: what is the best
trajectory for each agent to optimize a given
objective and respect an allocation?

Considering these problems separately suffers
from one main point: it is indeed not clear which
is the best allocation a priori, before computing
optimal trajectories. To avoid these suboptimal
solutions, the whole problem can be considered as
a global one that can handle the decision variables
for the allocation problem and the continuous
ones for the control design. The mixed integer
linear programming (MILP) is a powerful tool
that can deal with problems of this nature, mix-
ing two kinds of variables. It is an extension of
linear programming to the class of problems in
which some of the variables are constrained to
be integer (Floudas, 1995). The MILP approach
is particularly interesting here except that it re-
quires expressing the problem, the objective and
constraints, linearly with the variables selected.
Moreover, the NP-completeness nature of a MILP
formulation implies that the size of the problem,
correlated to the number of variables, has to re-
main rather small, especially here because it is
used for a real-time application.

The MILP problem, the core of the algorithm,
takes indeed place in the main loop of the al-
gorithm: first, at time ¢, each defender observes



the portion of the environment it can sense. This
defines for the whole team a set, that may be
empty, composed of M’ targets (0 < M' < M).
Based on that, an optimization problem (MILP
formulation) is solved. Then, for each agent k,
the control u’,i“ is applied, meanwhile each at-
tacker moves according to the dynamic defined
previously.

4.2 Variables

To design a strategy of defense, the first thing to
do is to choose on what the decisions are going to
be based. As any strategy, a long-term vision has
to be considered which corresponds to a classic
receding horizon approach. The horizon will be
fixed and equals to H. Thus, the continuous con-
trol variables involved here are at time ¢ are rep-
resented by the matrix ut = (u}sj—t,)lSkSK,lSt’ <H-
The allocation variables can be represented by
binary variables d. For a given agent k¥ and a
target m', dy,ms = 1 if this agent is allocated to
m’ and dj, = 0 if not. This provides a complete
description for discrete decisions, convenient to
express constraints and objectives.

4.8 Expression of linear constraints

There are two main kinds of constraints in this
problem, first the agents have to respect their own
dynamics and second the team has to intercept
the selected targets. With the dynamic introduced
previously, the constraints at time ¢ are easily
expressed by: Vk € [1, K], Vt' € [1, H],

u}fjt’ < Upmaz and ufjtl > —Umaz (2)
Here, due to the simple form of the dynamic, the
problems of collisions can be ignored. However,
for more general dynamics, some other constraints
have to be added: V¢’ € [1..H],

ottt <alt vk e [L.K - 1] (3)
it > —a/2 and :L";'tl <a/2 (4)

To formulate the interception problem with linear
constraints, the basic idea is to use an arbitrary
large constant C' whose combination with binary
variables will relax or not the constraint, depend-
ing on the decision for the allocation. Let us de-
note I; the set of the M' agents known at time ¢,
then the constraints can be expressed by 2.K.M'
inequalities: Vk € [1, K], Vm' € I,

t,
oh+ > ubt + g /2 < Xy + C(1 = dy ) (5)
t'=1

t,
oh+ > ubt — i /2> X — C(1 = dy ) (6)

t'=1

Therefore, if the allocation (kK — m') is chosen,
the previous inequalities correspond to the inter-
ception constraint and otherwise, the constant C
implies that the inequalities are always satisfied
whatever the values of control variables. At this
point, based on the simple observation that only
one agent is required to intercept a target, a
principle of parsimony can be expressed by the
inequality:

K
Y dpw <1 Vm' €1, (7)
k=1

4.4 Objectives

Finding a linear criterion whose optimization
would lead to the goal desired is not an easy
task here especially because of the limited vi-
sion properties of agents. As noticed previously,
the agents have to have conjointly two types of
behaviors: intercepting the observed targets and
exploring the environment to detect new ones.
Therefore two criterions need to be established to
reflect these two behaviors but also the balance
between them that will be expressed here by a
linear combination.

Thanks to the allocation variables, the objective
relative to the largest number of targets to inter-
cept is direct to express:

max E

m' el ,ke[1..K]

,Ya(ml)dk’m, (8)

The « parameter (1/2 < v < 1) is aimed at pro-
ducing a preference among the targets. For that
purpose, the bijection o over I; on [1..M'] is used
ranking each target according to its proximity to
the defense line (o(m') = 1 if m' is the closest
target to intercept). The goal of this order is to
deal with situations in which the team cannot
intercept all the targets. The simple principle ap-
plied here is that, for a same number of targets
to be intercepted, the best decision is to choose
the closest targets so that the team is available
for other tasks as soon as possible.

A linear criterion for an exploration purpose is
much more delicate to find. Here, the approach is
first to build a good one of any kind and then
to proceed to a linearization. Exploring means
here to have a good global knowledge of the
environment. Observing always or too often the
same region does not bring much information
since any agent k can sense what happens at
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Fig. 2. T-function for K = 4 defenders (wy =
0.1.a,VEk)

distance hy in front of it. Therefore, to have an
effective exploring behavior requires recording the
past actions of the team. A simple and convenient
way to do so is to define a function T} over the
space [—a/2;a/2] that associates for every z in
this interval the time run out between the current
time ¢ and the time when a member of the team
has observed z for the last time. This function
synthesizes the past actions of the whole team
and is also a useful representation to decide which
regions need to be observed in priority. With this
data, the goal of the team is to reduce globally
this function. One way to capture synthetically
the information contained in T is to consider an
integral expression of it. Moreover, to introduce
a weighting to differentiate the positions recently
visited of the others (where the probability to
detect an attacker is higher since it has not been
sensed for a long time), to consider the function
T where o > 1 instead of T is better. Given the
horizon of time H, the goal is then to minimize:

H a/2

=) /

I —
t 71—(1./2

[Tit ()] dz 9)

®; can clearly be viewed as a function of future
vectors of controls for the team (u!*! ... u!th).
An operator © can be readily built expressing the
iterative dependency of Ty, in Ty and u!*!: if
is observed by any agent (i.e. z € [z}, + ult —
wi/2; 2t + ubtt + wy, /2])

Tis1(2) =O(T;, u'™)(2) =0 (10)
=Ti(x) + 1 otherwise (11)

It is then immediate that T} is a piecewise linear
function. An example, of T} is shown on figure 2.

To provide a linear criterion cg, of ®; depending
on (uttl,...,utth) a first approach is to linearize
by a least square (LSQ) approximation using an

iterative technique based on the observation that
the T-function does not change a lot between two
steps of time. Knowing that K can be large, a
decentralized approach has to be used by consid-
ering T as a set of K local functions {TF, k €
[1..K]} that depend only on the vector uj and
restricted over the neighborhood of k (the space
between its two neighbors). Precisely, Vk € [1..K],
TF(uk) = Ijgy_y520,1)-Te(u), where I is the indica-
tor function. With all the previous elements, the
objective function of u* and d to minimize at time
t is:

K,H K
k' t4t m'
§: iyl ultt — §: ) dy e (12)
k=1,t'=1 k=1,m'€l,

under the constraints (5), (6) and (7). 8 is
a strictly positive parameter experimentally ad-
justed.

5. IMPLEMENTATION AND RESULTS
5.1 Software and implementation issues

The MILP problem was solved by using CPLEX
which is a powerful solver that can handle
this type of formulation. The modeling language
AMPL (Fourer et al., 1993) was used to avoid
expressing the problem directly into the requested
format. One main advantage of AMPL is that it
is really easy to translate the mathematical form
of the optimization problem into AMPL language.
The problem is decomposed into two files, a model
file that gathers the form and architecture of
the optimization formulation and a data file that
provides the parameters for the problem. AMPL
translates into the standard required by CPLEX
(MPS-file). AMPL/CPLEX were called by a Mat-
lab script before it has generated the data for the
MILP problem at time ¢. This requires writing
through Matlab a data file at each iteration. The
simulations were run under Linux on a 0.7GHz
PC with 256MB RAM.

As said previously, a MILP problem is NP-
complete (see (Till et al., 2002) for MILP and
complexity issues) and since it is used here for
a real-time application, some precautions have to
be taken assuming that the number of defenders
and attackers at a same time can be important.
One example used here to reduce the size of the
problem is to discard allocations that are clearly
suboptimal. Thus, the CPU time to interpret the
AMPL model and solve it with CPLEX requires
for K = 10 and M = 40 0.1 second in the worst
cases and 0.05 second on average. However, since
the model almost changes at each iteration, this
requires writing frequently a new data file. This
slows down the actual execution time that goes
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from 0.5 to 1 second per iteration. One way to
deal with that problem will be to express directly
the problem in CPLEX language.

5.2 Results and comparisons

The results got with the simulations show that in
every case tested, the MILP approach performs
better than the naive algorithm. The graph on
figure 3 is an example that summarizes the rates
of interception for both algorithms measured on
80 experiments of 1000 iterations each. In both
simulations, the number of attackers M was cho-
sen equal to 10, and the probability parameter
p (roughly speaking, p set the frequency of ap-
parition of attackers) was 0.1. The graph requires
a few comments. First, the performance of the
naive algorithm is approximately linear on the
number of defenders whereas the MILP provides
a concave curve. The gap between the algorithms
reaches its maximum for a team composed of 5
defenders which corresponds to a coverage of 50%
of the x-axis at a same time. Intuitively, the coop-
eration is more efficient in this situation because
the distance between each defender is sufficiently
small so that defenders can switch targets between
each other; this cannot be often realized for small
numbers K of defenders. On the contrary, when
K gets bigger, the number of targets per agent
is too small to take advantage of an allocation
procedure.

6. CONCLUSION AND FUTURE WORK

This work showed how to use a MILP method
for strategic problems with the framework of
RoboFlag application. It has also been exposed
the difficulties that arise with the dynamic nature
of a strategic problem in the context of a real-time
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Fig. 4. Illustration of a dynamic of allocations

application and the way to cope with them. The
results got with the MILP approach are encour-
aging to extend these ideas to much more com-
plex model of strategies implying a probability
approach. In the future, the algorithm can be im-
plemented on the hardware structure of RoboFlag
at Caltech to validate these results.

Another direction currently studied is to under-
stand the performance of a team of heteroge-
neous agents in a strategic and cooperative con-
text depending on their respective competences
and properties. A coarse analysis approach, based
on averages of relevant characteristics of behavior
(like positions), is developed hoping to get an esti-
mation of performances depending on the various
parameters. Thus, the best defense structure can
be optimally chosen a priori for a given problem.
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